亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

As autonomous vehicles continue to revolutionize transportation, addressing challenges posed by adverse weather conditions, particularly during winter, becomes paramount for ensuring safe and efficient operations. One of the most important aspects of a road safety inspection during adverse weather is when a limited lane width can reduce the capacity of the road and raise the risk of serious accidents involving autonomous vehicles. In this research, a method for improving driving challenges on roads in winter conditions, with a model that segments and estimates the width of the road from the perspectives of Uncrewed aerial vehicles and autonomous vehicles. The proposed approach in this article is needed to empower self-driving cars with up-to-date and accurate insights, enhancing their adaptability and decision-making capabilities in winter landscapes.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 估計/估計量 · 點云 · Microsoft Surface · Learning ·
2024 年 7 月 30 日

We propose a novel method called SHS-Net for oriented normal estimation of point clouds by learning signed hyper surfaces, which can accurately predict normals with global consistent orientation from various point clouds. Almost all existing methods estimate oriented normals through a two-stage pipeline, i.e., unoriented normal estimation and normal orientation, and each step is implemented by a separate algorithm. However, previous methods are sensitive to parameter settings, resulting in poor results from point clouds with noise, density variations and complex geometries. In this work, we introduce signed hyper surfaces (SHS), which are parameterized by multi-layer perceptron (MLP) layers, to learn to estimate oriented normals from point clouds in an end-to-end manner. The signed hyper surfaces are implicitly learned in a high-dimensional feature space where the local and global information is aggregated. Specifically, we introduce a patch encoding module and a shape encoding module to encode a 3D point cloud into a local latent code and a global latent code, respectively. Then, an attention-weighted normal prediction module is proposed as a decoder, which takes the local and global latent codes as input to predict oriented normals. Experimental results show that our SHS-Net outperforms the state-of-the-art methods in both unoriented and oriented normal estimation on the widely used benchmarks.

We present VisFly, a quadrotor simulator designed to efficiently train vision-based flight policies using reinforcement learning algorithms. VisFly offers a user-friendly framework and interfaces, leveraging Habitat-Sim's rendering engines to achieve frame rates exceeding 10,000 frames per second for rendering motion and sensor data. The simulator incorporates differentiable physics and seamlessly integrates with the Gym environment, facilitating the straightforward implementation of various learning algorithms. It supports the direct import of all open-source scene datasets compatible with Habitat-Sim, enabling training on diverse real-world environments and ensuring fair comparisons of learned flight policies. We also propose a general policy architecture for three typical flight tasks relying on visual observations, which have been validated in our simulator using reinforcement learning. The simulator will be available at [//github.com/SJTU-ViSYS/VisFly].

Transmission lines, crucial to the power grid, are subjected to diverse environmental conditions such as wind, temperature, humidity, and pollution. While these conditions represent a consistent impact on the transmission lines, certain unpredictable conditions such as unexpected high wind, wildfire, and icing pose catastrophic risks to the reliability and integrity of the transmission lines. These factors in the presence of initial damage and electrical loads greatly affect the material properties. In this paper, we develop a comprehensive thermo-electro-mechanical model to investigate the long-term effect of unexpected high wind, wildfire, and ice on transmission lines. This study offers an in-depth perspective on temperature and damage evolution within the power lines by incorporating a phase field model for damage and fatigue, alongside thermal and electrical models. We define a state function to assess the failure, considering damage and temperature. We study three scenarios deterministically to establish a basic understanding and analyze the stochastic behavior using the Probabilistic Collocation Method (PCM). We utilize PCM for forward uncertainty quantification, conducting sensitivity analysis, and evaluating the probability of failure. This approach offers an in-depth examination of the potential risks associated with transmission lines under unfavorable circumstances.

To safely navigate intricate real-world scenarios, autonomous vehicles must be able to adapt to diverse road conditions and anticipate future events. World model (WM) based reinforcement learning (RL) has emerged as a promising approach by learning and predicting the complex dynamics of various environments. Nevertheless, to the best of our knowledge, there does not exist an accessible platform for training and testing such algorithms in sophisticated driving environments. To fill this void, we introduce CarDreamer, the first open-source learning platform designed specifically for developing WM based autonomous driving algorithms. It comprises three key components: 1) World model backbone: CarDreamer has integrated some state-of-the-art WMs, which simplifies the reproduction of RL algorithms. The backbone is decoupled from the rest and communicates using the standard Gym interface, so that users can easily integrate and test their own algorithms. 2) Built-in tasks: CarDreamer offers a comprehensive set of highly configurable driving tasks which are compatible with Gym interfaces and are equipped with empirically optimized reward functions. 3) Task development suite: This suite streamlines the creation of driving tasks, enabling easy definition of traffic flows and vehicle routes, along with automatic collection of multi-modal observation data. A visualization server allows users to trace real-time agent driving videos and performance metrics through a browser. Furthermore, we conduct extensive experiments using built-in tasks to evaluate the performance and potential of WMs in autonomous driving. Thanks to the richness and flexibility of CarDreamer, we also systematically study the impact of observation modality, observability, and sharing of vehicle intentions on AV safety and efficiency. All code and documents are accessible on //github.com/ucd-dare/CarDreamer.

The benefit of transformers in large-scale 3D point cloud perception tasks, such as 3D object detection, is limited by their quadratic computation cost when modeling long-range relationships. In contrast, linear RNNs have low computational complexity and are suitable for long-range modeling. Toward this goal, we propose a simple and effective window-based framework built on LInear grOup RNN (i.e., perform linear RNN for grouped features) for accurate 3D object detection, called LION. The key property is to allow sufficient feature interaction in a much larger group than transformer-based methods. However, effectively applying linear group RNN to 3D object detection in highly sparse point clouds is not trivial due to its limitation in handling spatial modeling. To tackle this problem, we simply introduce a 3D spatial feature descriptor and integrate it into the linear group RNN operators to enhance their spatial features rather than blindly increasing the number of scanning orders for voxel features. To further address the challenge in highly sparse point clouds, we propose a 3D voxel generation strategy to densify foreground features thanks to linear group RNN as a natural property of auto-regressive models. Extensive experiments verify the effectiveness of the proposed components and the generalization of our LION on different linear group RNN operators including Mamba, RWKV, and RetNet. Furthermore, it is worth mentioning that our LION-Mamba achieves state-of-the-art on Waymo, nuScenes, Argoverse V2, and ONCE dataset. Last but not least, our method supports kinds of advanced linear RNN operators (e.g., RetNet, RWKV, Mamba, xLSTM and TTT) on small but popular KITTI dataset for a quick experience with our linear RNN-based framework.

Artificial intelligence (AI)-based weather prediction research is growing rapidly and has shown to be competitive with the advanced dynamic numerical weather prediction models. However, research combining AI-based weather prediction models with data assimilation remains limited partially because long-term sequential data assimilation cycles are required to evaluate data assimilation systems. This study explores integrating the local ensemble transform Kalman filter (LETKF) with an AI-based weather prediction model ClimaX. Our experiments demonstrated that the ensemble data assimilation cycled stably for the AI-based weather prediction model using covariance inflation and localization techniques inside the LETKF. While ClimaX showed some limitations in capturing flow-dependent error covariance compared to dynamical models, the AI-based ensemble forecasts provided reasonable and beneficial error covariance in sparsely observed regions. These findings highlight the potential of AI models in weather forecasting and the importance of physical consistency and accurate error growth representation in improving ensemble data assimilation.

Synthetic Lethal (SL) relationships, though rare among the vast array of gene combinations, hold substantial promise for targeted cancer therapy. Despite advancements in AI model accuracy, there is still a significant need among domain experts for interpretive paths and mechanism explorations that align better with domain-specific knowledge, particularly due to the high costs of experimentation. To address this gap, we propose an iterative Human-AI collaborative framework with two key components: 1) Human-Engaged Knowledge Graph Refinement based on Metapath Strategies, which leverages insights from interpretive paths and domain expertise to refine the knowledge graph through metapath strategies with appropriate granularity. 2) Cross-Granularity SL Interpretation Enhancement and Mechanism Analysis, which aids experts in organizing and comparing predictions and interpretive paths across different granularities, uncovering new SL relationships, enhancing result interpretation, and elucidating potential mechanisms inferred by Graph Neural Network (GNN) models. These components cyclically optimize model predictions and mechanism explorations, enhancing expert involvement and intervention to build trust. Facilitated by SLInterpreter, this framework ensures that newly generated interpretive paths increasingly align with domain knowledge and adhere more closely to real-world biological principles through iterative Human-AI collaboration. We evaluate the framework's efficacy through a case study and expert interviews.

Rapid sampling from the environment to acquire available frontier points and timely incorporating them into subsequent planning to reduce fragmented regions are critical to improve the efficiency of autonomous exploration. We propose HPHS, a fast and effective method for the autonomous exploration of unknown environments. In this work, we efficiently sample frontier points directly from the LiDAR data and the local map around the robot, while exploiting a hierarchical planning strategy to provide the robot with a global perspective. The hierarchical planning framework divides the updated environment into multiple subregions and arranges the order of access to them by considering the overall revenue of the global path. The combination of the hybrid frontier sampling method and hierarchical planning strategy reduces the complexity of the planning problem and mitigates the issue of region remnants during the exploration process. Detailed simulation and real-world experiments demonstrate the effectiveness and efficiency of our approach in various aspects. The source code will be released to benefit the further research.

Owing to effective and flexible data acquisition, unmanned aerial vehicle (UAV) has recently become a hotspot across the fields of computer vision (CV) and remote sensing (RS). Inspired by recent success of deep learning (DL), many advanced object detection and tracking approaches have been widely applied to various UAV-related tasks, such as environmental monitoring, precision agriculture, traffic management. This paper provides a comprehensive survey on the research progress and prospects of DL-based UAV object detection and tracking methods. More specifically, we first outline the challenges, statistics of existing methods, and provide solutions from the perspectives of DL-based models in three research topics: object detection from the image, object detection from the video, and object tracking from the video. Open datasets related to UAV-dominated object detection and tracking are exhausted, and four benchmark datasets are employed for performance evaluation using some state-of-the-art methods. Finally, prospects and considerations for the future work are discussed and summarized. It is expected that this survey can facilitate those researchers who come from remote sensing field with an overview of DL-based UAV object detection and tracking methods, along with some thoughts on their further developments.

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.

北京阿比特科技有限公司