亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The Link Prediction is the task of predicting missing relations between entities of the knowledge graph. Recent work in link prediction has attempted to provide a model for increasing link prediction accuracy by using more layers in neural network architecture. In this paper, we propose a novel method of refining the knowledge graph so that link prediction operation can be performed more accurately using relatively fast translational models. Translational link prediction models, such as TransE, TransH, TransD, have less complexity than deep learning approaches. Our method uses the hierarchy of relationships and entities in the knowledge graph to add the entity information as auxiliary nodes to the graph and connect them to the nodes which contain this information in their hierarchy. Our experiments show that our method can significantly increase the performance of translational link prediction methods in H@10, MR, MRR.

相關內容

網(wang)(wang)絡中的(de)鏈(lian)路預測(ce)(ce)(Link Prediction)是指(zhi)如何通(tong)過已知的(de)網(wang)(wang)絡節點以(yi)及網(wang)(wang)絡結構等信息預測(ce)(ce)網(wang)(wang)絡中尚未(wei)產生連邊的(de)兩個節點之間產生鏈(lian)接(jie)的(de)可能(neng)性。這種預測(ce)(ce)既包(bao)含了對(dui)未(wei)知鏈(lian)接(jie)(exist yet unknown links)的(de)預測(ce)(ce)也包(bao)含了對(dui)未(wei)來鏈(lian)接(jie)(future links)的(de)預測(ce)(ce)。該(gai)問題的(de)研究在理論和應用兩個方面(mian)都具有重要的(de)意義(yi)和價值 。

The dominant paradigm for relation prediction in knowledge graphs involves learning and operating on latent representations (i.e., embeddings) of entities and relations. However, these embedding-based methods do not explicitly capture the compositional logical rules underlying the knowledge graph, and they are limited to the transductive setting, where the full set of entities must be known during training. Here, we propose a graph neural network based relation prediction framework, GraIL, that reasons over local subgraph structures and has a strong inductive bias to learn entity-independent relational semantics. Unlike embedding-based models, GraIL is naturally inductive and can generalize to unseen entities and graphs after training. We provide theoretical proof and strong empirical evidence that GraIL can represent a useful subset of first-order logic and show that GraIL outperforms existing rule-induction baselines in the inductive setting. We also demonstrate significant gains obtained by ensembling GraIL with various knowledge graph embedding methods in the transductive setting, highlighting the complementary inductive bias of our method.

Learning embeddings of entities and relations existing in knowledge bases allows the discovery of hidden patterns in data. In this work, we examine the geometrical space's contribution to the task of knowledge base completion. We focus on the family of translational models, whose performance has been lagging, and propose a model, dubbed HyperKG, which exploits the hyperbolic space in order to better reflect the topological properties of knowledge bases. We investigate the type of regularities that our model can capture and we show that it is a prominent candidate for effectively representing a subset of Datalog rules. We empirically show, using a variety of link prediction datasets, that hyperbolic space allows to narrow down significantly the performance gap between translational and bilinear models.

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.

Knowledge graph embedding aims to learn distributed representations for entities and relations, and is proven to be effective in many applications. Crossover interactions --- bi-directional effects between entities and relations --- help select related information when predicting a new triple, but haven't been formally discussed before. In this paper, we propose CrossE, a novel knowledge graph embedding which explicitly simulates crossover interactions. It not only learns one general embedding for each entity and relation as most previous methods do, but also generates multiple triple specific embeddings for both of them, named interaction embeddings. We evaluate embeddings on typical link prediction tasks and find that CrossE achieves state-of-the-art results on complex and more challenging datasets. Furthermore, we evaluate embeddings from a new perspective --- giving explanations for predicted triples, which is important for real applications. In this work, an explanation for a triple is regarded as a reliable closed-path between the head and the tail entity. Compared to other baselines, we show experimentally that CrossE, benefiting from interaction embeddings, is more capable of generating reliable explanations to support its predictions.

Knowledge graphs are large graph-structured databases of facts, which typically suffer from incompleteness. Link prediction is the task of inferring missing relations (links) between entities (nodes) in a knowledge graph. We approach this task using a hypernetwork architecture to generate convolutional layer filters specific to each relation and apply those filters to the subject entity embeddings. This architecture enables a trade-off between non-linear expressiveness and the number of parameters to learn. Our model simplifies the entity and relation embedding interactions introduced by the predecessor convolutional model, while outperforming all previous approaches to link prediction across all standard link prediction datasets.

Knowledge Graph Embedding methods aim at representing entities and relations in a knowledge base as points or vectors in a continuous vector space. Several approaches using embeddings have shown promising results on tasks such as link prediction, entity recommendation, question answering, and triplet classification. However, only a few methods can compute low-dimensional embeddings of very large knowledge bases. In this paper, we propose KG2Vec, a novel approach to Knowledge Graph Embedding based on the skip-gram model. Instead of using a predefined scoring function, we learn it relying on Long Short-Term Memories. We evaluated the goodness of our embeddings on knowledge graph completion and show that KG2Vec is comparable to the quality of the scalable state-of-the-art approaches and can process large graphs by parsing more than a hundred million triples in less than 6 hours on common hardware.

The aim of knowledge graphs is to gather knowledge about the world and provide a structured representation of this knowledge. Current knowledge graphs are far from complete. To address the incompleteness of the knowledge graphs, link prediction approaches have been developed which make probabilistic predictions about new links in a knowledge graph given the existing links. Tensor factorization approaches have proven promising for such link prediction problems. In this paper, we develop a simple tensor factorization model called SimplE, through a slight modification of the Polyadic Decomposition model from 1927. The complexity of SimplE grows linearly with the size of embeddings. The embeddings learned through SimplE are interpretable, and certain types of expert knowledge in terms of logical rules can be incorporated into these embeddings through weight tying. We prove SimplE is fully-expressive and derive a bound on the size of its embeddings for full expressivity. We show empirically that, despite its simplicity, SimplE outperforms several state-of-the-art tensor factorization techniques.

Knowledge graphs, on top of entities and their relationships, contain another important element: literals. Literals encode interesting properties (e.g. the height) of entities that are not captured by links between entities alone. Most of the existing work on embedding (or latent feature) based knowledge graph modeling focuses mainly on the relations between entities. In this work, we study the effect of incorporating literal information into existing knowledge graph models. Our approach, which we name LiteralE, is an extension that can be plugged into existing latent feature methods. LiteralE merges entity embeddings with their literal information using a learnable, parametrized function, such as a simple linear or nonlinear transformation, or a multilayer neural network. We extend several popular embedding models using LiteralE and evaluate the performance on the task of link prediction. Despite its simplicity, LiteralE proves to be an effective way to incorporate literal information into existing embedding based models, improving their performance on different standard datasets, which we augmented with their literals and provide as testbed for further research.

Knowledge graphs contain rich relational structures of the world, and thus complement data-driven machine learning in heterogeneous data. One of the most effective methods in representing knowledge graphs is to embed symbolic relations and entities into continuous spaces, where relations are approximately linear translation between projected images of entities in the relation space. However, state-of-the-art relation projection methods such as TransR, TransD or TransSparse do not model the correlation between relations, and thus are not scalable to complex knowledge graphs with thousands of relations, both in computational demand and in statistical robustness. To this end we introduce TransF, a novel translation-based method which mitigates the burden of relation projection by explicitly modeling the basis subspaces of projection matrices. As a result, TransF is far more light weight than the existing projection methods, and is robust when facing a high number of relations. Experimental results on the canonical link prediction task show that our proposed model outperforms competing rivals by a large margin and achieves state-of-the-art performance. Especially, TransF improves by 9%/5% in the head/tail entity prediction task for N-to-1/1-to-N relations over the best performing translation-based method.

Knowledge graph embedding aims to embed entities and relations of knowledge graphs into low-dimensional vector spaces. Translating embedding methods regard relations as the translation from head entities to tail entities, which achieve the state-of-the-art results among knowledge graph embedding methods. However, a major limitation of these methods is the time consuming training process, which may take several days or even weeks for large knowledge graphs, and result in great difficulty in practical applications. In this paper, we propose an efficient parallel framework for translating embedding methods, called ParTrans-X, which enables the methods to be paralleled without locks by utilizing the distinguished structures of knowledge graphs. Experiments on two datasets with three typical translating embedding methods, i.e., TransE [3], TransH [17], and a more efficient variant TransE- AdaGrad [10] validate that ParTrans-X can speed up the training process by more than an order of magnitude.

北京阿比特科技有限公司