Consider the problem of constructing an experimental design, optimal for estimating parameters of a given statistical model with respect to a chosen criterion. To address this problem, the literature usually provides a single solution. Often, however, there exists a rich set of optimal designs, and the knowledge of this set can lead to substantially greater freedom to select an appropriate experiment. In this paper, we demonstrate that the set of all optimal approximate designs generally corresponds to a polytope. Particularly important elements of the polytope are its vertices, which we call vertex optimal designs. We prove that the vertex optimal designs possess unique properties, such as small supports, and outline strategies for how they can facilitate the construction of suitable experiments. Moreover, we show that for a variety of situations it is possible to construct the vertex optimal designs with the assistance of a computer, by employing error-free rational-arithmetic calculations. In such cases the vertex optimal designs are exact, often closely related to known combinatorial designs. Using this approach, we were able to determine the polytope of optimal designs for some of the most common multifactor regression models, thereby extending the choice of informative experiments for a large variety of applications.
Population protocols are a model of distributed computation in which an arbitrary number of indistinguishable finite-state agents interact in pairs to decide some property of their initial configuration. We investigate the behaviour of population protocols under adversarial faults that cause agents to silently crash and no longer interact with other agents. As a starting point, we consider the property ``the number of agents exceeds a given threshold $t$'', represented by the predicate $x \geq t$, and show that the standard protocol for $x \geq t$ is very fragile: one single crash in a computation with $x:=2t-1$ agents can already cause the protocol to answer incorrectly that $x \geq t$ does not hold. However, a slightly less known protocol is robust: for any number $t' \geq t$ of agents, at least $t' - t+1$ crashes must occur for the protocol to answer that the property does not hold. We formally define robustness for arbitrary population protocols, and investigate the question whether every predicate computable by population protocols has a robust protocol. Angluin et al. proved in 2007 that population protocols decide exactly the Presburger predicates, which can be represented as Boolean combinations of threshold predicates of the form $\sum_{i=1}^n a_i \cdot x_i \geq t$ for $a_1,...,a_n, t \in \mathbb{Z}$ and modulo prdicates of the form $\sum_{i=1}^n a_i \cdot x_i \bmod m \geq t $ for $a_1, \ldots, a_n, m, t \in \mathbb{N}$. We design robust protocols for all threshold and modulo predicates. We also show that, unfortunately, the techniques in the literature that construct a protocol for a Boolean combination of predicates given protocols for the conjuncts do not preserve robustness. So the question remains open.
This research provides a comprehensive overview of adversarial attacks on AI and ML models, exploring various attack types, techniques, and their potential harms. We also delve into the business implications, mitigation strategies, and future research directions. To gain practical insights, we employ the Adversarial Robustness Toolbox (ART) [1] library to simulate these attacks on real-world use cases, such as self-driving cars. Our goal is to inform practitioners and researchers about the challenges and opportunities in defending AI systems against adversarial threats. By providing a comprehensive comparison of different attack methods, we aim to contribute to the development of more robust and secure AI systems.
Confidence calibration of classification models is a technique to estimate the true posterior probability of the predicted class, which is critical for ensuring reliable decision-making in practical applications. Existing confidence calibration methods mostly use statistical techniques to estimate the calibration curve from data or fit a user-defined calibration function, but often overlook fully mining and utilizing the prior distribution behind the calibration curve. However, a well-informed prior distribution can provide valuable insights beyond the empirical data under the limited data or low-density regions of confidence scores. To fill this gap, this paper proposes a new method that integrates the prior distribution behind the calibration curve with empirical data to estimate a continuous calibration curve, which is realized by modeling the sampling process of calibration data as a binomial process and maximizing the likelihood function of the binomial process. We prove that the calibration curve estimating method is Lipschitz continuous with respect to data distribution and requires a sample size of $3/B$ of that required for histogram binning, where $B$ represents the number of bins. Also, a new calibration metric ($TCE_{bpm}$), which leverages the estimated calibration curve to estimate the true calibration error (TCE), is designed. $TCE_{bpm}$ is proven to be a consistent calibration measure. Furthermore, realistic calibration datasets can be generated by the binomial process modeling from a preset true calibration curve and confidence score distribution, which can serve as a benchmark to measure and compare the discrepancy between existing calibration metrics and the true calibration error. The effectiveness of our calibration method and metric are verified in real-world and simulated data.
We propose an instrumental variable framework for identifying and estimating causal effects of discrete and continuous treatments with binary instruments. The basis of our approach is a local copula representation of the joint distribution of the potential outcomes and unobservables determining treatment assignment. This representation allows us to introduce an identifying assumption, so-called copula invariance, that restricts the local dependence of the copula with respect to the treatment propensity. We show that copula invariance identifies treatment effects for the entire population and other subpopulations such as the treated. The identification results are constructive and lead to practical estimation and inference procedures based on distribution regression. An application to estimating the effect of sleep on well-being uncovers interesting patterns of heterogeneity.
The ability to execute the test suite of a project is essential in many scenarios, e.g., to assess code quality and code coverage, to validate code changes made by developers or automated tools, and to ensure compatibility with dependencies. Despite its importance, executing the test suite of a project can be challenging in practice because different projects use different programming languages, software ecosystems, build systems, testing frameworks, and other tools. These challenges make it difficult to create a reliable, universal test execution method that works across different projects. This paper presents ExecutionAgent, an automated technique that installs arbitrary projects, configures them to run test cases, and produces project-specific scripts to reproduce the setup. Inspired by the way a human developer would address this task, our approach is a large language model-based agent that autonomously executes commands and interacts with the host system. The agent uses meta-prompting to gather guidelines on the latest technologies related to the given project, and it iteratively refines its process based on feedback from the previous steps. Our evaluation applies ExecutionAgent to 50 open-source projects that use 14 different programming languages and many different build and testing tools. The approach successfully executes the test suites of 33/55 projects, while matching the test results of ground truth test suite executions with a deviation of only 7.5\%. These results improve over the best previously available technique by 6.6x. The costs imposed by the approach are reasonable, with an execution time of 74 minutes and LLM costs of 0.16 dollars, on average per project. We envision ExecutionAgent to serve as a valuable tool for developers, automated programming tools, and researchers that need to execute tests across a wide variety of projects.
With the increasing presence of dynamic scenarios, such as Vehicle-to-Vehicle communications, radio propagation modeling tools must adapt to the rapidly changing nature of the radio channel. Recently, both Differentiable and Dynamic Ray Tracing frameworks have emerged to address these challenges. However, there is often confusion about how these approaches differ and which one should be used in specific contexts. In this paper, we provide an overview of these two techniques and a comparative analysis against two state-of-the-art tools: 3DSCAT from UniBo and Sionna from NVIDIA. To provide a more precise characterization of the scope of these methods, we introduce a novel simulation-based metric, the Multipath Lifetime Map, which enables the evaluation of spatial and temporal coherence in radio channels only based on the geometrical description of the environment. Finally, our metrics are evaluated on a classic urban street canyon scenario, yielding similar results to those obtained from measurement campaigns.
We study decentralized multiagent optimization over networks, modeled as undirected graphs. The optimization problem consists of minimizing a nonconvex smooth function plus a convex extended-value function, which enforces constraints or extra structure on the solution (e.g., sparsity, low-rank). We further assume that the objective function satisfies the Kurdyka-{\L}ojasiewicz (KL) property, with given exponent $\theta\in [0,1)$. The KL property is satisfied by several (nonconvex) functions of practical interest, e.g., arising from machine learning applications; in the centralized setting, it permits to achieve strong convergence guarantees. Here we establish convergence of the same type for the notorious decentralized gradient-tracking-based algorithm SONATA. Specifically, $\textbf{(i)}$ when $\theta\in (0,1/2]$, the sequence generated by SONATA converges to a stationary solution of the problem at R-linear rate;$ \textbf{(ii)} $when $\theta\in (1/2,1)$, sublinear rate is certified; and finally $\textbf{(iii)}$ when $\theta=0$, the iterates will either converge in a finite number of steps or converges at R-linear rate. This matches the convergence behavior of centralized proximal-gradient algorithms except when $\theta=0$. Numerical results validate our theoretical findings.
Recent improvements in the quality of the generations by large language models have spurred research into identifying machine-generated text. Such work often presents high-performing detectors. However, humans and machines can produce text in different styles and domains, yet the performance impact of such on machine generated text detection systems remains unclear. In this paper, we audit the classification performance for detecting machine-generated text by evaluating on texts with varying writing styles. We find that classifiers are highly sensitive to stylistic changes and differences in text complexity, and in some cases degrade entirely to random classifiers. We further find that detection systems are particularly susceptible to misclassify easy-to-read texts while they have high performance for complex texts, leading to concerns about the reliability of detection systems. We recommend that future work attends to stylistic factors and reading difficulty levels of human-written and machine-generated text.
This work uniquely identifies and characterizes four prevalent multimodal model architectural patterns in the contemporary multimodal landscape. Systematically categorizing models by architecture type facilitates monitoring of developments in the multimodal domain. Distinct from recent survey papers that present general information on multimodal architectures, this research conducts a comprehensive exploration of architectural details and identifies four specific architectural types. The types are distinguished by their respective methodologies for integrating multimodal inputs into the deep neural network model. The first two types (Type A and B) deeply fuses multimodal inputs within the internal layers of the model, whereas the following two types (Type C and D) facilitate early fusion at the input stage. Type-A employs standard cross-attention, whereas Type-B utilizes custom-designed layers for modality fusion within the internal layers. On the other hand, Type-C utilizes modality-specific encoders, while Type-D leverages tokenizers to process the modalities at the model's input stage. The identified architecture types aid the monitoring of any-to-any multimodal model development. Notably, Type-C and Type-D are currently favored in the construction of any-to-any multimodal models. Type-C, distinguished by its non-tokenizing multimodal model architecture, is emerging as a viable alternative to Type-D, which utilizes input-tokenizing techniques. To assist in model selection, this work highlights the advantages and disadvantages of each architecture type based on data and compute requirements, architecture complexity, scalability, simplification of adding modalities, training objectives, and any-to-any multimodal generation capability.
This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.