亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Over the past decade, deep learning helped solve manipulation problems across all domains of robotics. At the same time, industrial robots continue to be programmed overwhelmingly using traditional program representations and interfaces. This paper undertakes an analysis of this "AI adoption gap" from an industry practitioner's perspective. In response, we propose the BANSAI approach (Bridging the AI Adoption Gap via Neurosymbolic AI). It systematically leverages principles of neurosymbolic AI to establish data-driven, subsymbolic program synthesis and optimization in modern industrial robot programming workflow. BANSAI conceptually unites several lines of prior research and proposes a path toward practical, real-world validation.

相關內容

人工智能雜志AI(Artificial Intelligence)是目前公認的發表該領域最新研究成果的主要國際論壇。該期刊歡迎有關AI廣泛方面的論文,這些論文構成了整個領域的進步,也歡迎介紹人工智能應用的論文,但重點應該放在新的和新穎的人工智能方法如何提高應用領域的性能,而不是介紹傳統人工智能方法的另一個應用。關于應用的論文應該描述一個原則性的解決方案,強調其新穎性,并對正在開發的人工智能技術進行深入的評估。 官網地址:

Safe deployment of AI models requires proactive detection of failures to prevent costly errors. To this end, we study the important problem of detecting failures in deep regression models. Existing approaches rely on epistemic uncertainty estimates or inconsistency w.r.t the training data to identify failure. Interestingly, we find that while uncertainties are necessary they are insufficient to accurately characterize failure in practice. Hence, we introduce PAGER (Principled Analysis of Generalization Errors in Regressors), a framework to systematically detect and characterize failures in deep regressors. Built upon the principle of anchored training in deep models, PAGER unifies both epistemic uncertainty and complementary manifold non-conformity scores to accurately organize samples into different risk regimes.

While spiking neural networks (SNNs) offer a promising neurally-inspired model of computation, they are vulnerable to adversarial attacks. We present the first study that draws inspiration from neural homeostasis to design a threshold-adapting leaky integrate-and-fire (TA-LIF) neuron model and utilize TA-LIF neurons to construct the adversarially robust homeostatic SNNs (HoSNNs) for improved robustness. The TA-LIF model incorporates a self-stabilizing dynamic thresholding mechanism, offering a local feedback control solution to the minimization of each neuron's membrane potential error caused by adversarial disturbance. Theoretical analysis demonstrates favorable dynamic properties of TA-LIF neurons in terms of the bounded-input bounded-output stability and suppressed time growth of membrane potential error, underscoring their superior robustness compared with the standard LIF neurons. When trained with weak FGSM attacks (attack budget = 2/255) and tested with much stronger PGD attacks (attack budget = 8/255), our HoSNNs significantly improve model accuracy on several datasets: from 30.54% to 74.91% on FashionMNIST, from 0.44% to 35.06% on SVHN, from 0.56% to 42.63% on CIFAR10, from 0.04% to 16.66% on CIFAR100, over the conventional LIF-based SNNs.

In a federated learning (FL) system, decentralized data owners (clients) could upload their locally trained models to a central server, to jointly train a global model. Malicious clients may plant backdoors into the global model through uploading poisoned local models, causing misclassification to a target class when encountering attacker-defined triggers. Existing backdoor defenses show inconsistent performance under different system and adversarial settings, especially when the malicious updates are made statistically close to the benign ones. In this paper, we first reveal the fact that planting subsequent backdoors with the same target label could significantly help to maintain the accuracy of previously planted backdoors, and then propose a novel proactive backdoor detection mechanism for FL named BackdoorIndicator, which has the server inject indicator tasks into the global model leveraging out-of-distribution (OOD) data, and then utilizing the fact that any backdoor samples are OOD samples with respect to benign samples, the server, who is completely agnostic of the potential backdoor types and target labels, can accurately detect the presence of backdoors in uploaded models, via evaluating the indicator tasks. We perform systematic and extensive empirical studies to demonstrate the consistently superior performance and practicality of BackdoorIndicator over baseline defenses, across a wide range of system and adversarial settings.

In various biomedical studies, the focus of analysis centers on the magnitudes of data, particularly when algebraic signs are irrelevant or lost. To analyze the magnitude outcomes in repeated measures studies, using models with random effects is essential. This is because random effects can account for individual heterogeneity, enhancing parameter estimation precision. However, there are currently no established regression methods that incorporate random effects and are specifically designed for magnitude outcomes. This article bridges this gap by introducing Bayesian regression modeling approaches for analyzing magnitude data, with a key focus on the incorporation of random effects. Additionally, the proposed method is extended to address multiple causes of informative dropout, commonly encountered in repeated measures studies. To tackle the missing data challenge arising from dropout, a joint modeling strategy is developed, building upon the previously introduced regression techniques. Two numerical simulation studies are conducted to assess the validity of our method. The chosen simulation scenarios aim to resemble the conditions of our motivating study. The results demonstrate that the proposed method for magnitude data exhibits good performance in terms of both estimation accuracy and precision, and the joint models effectively mitigate bias due to missing data. Finally, we apply proposed models to analyze the magnitude data from the motivating study, investigating if sex impacts the magnitude change in diaphragm thickness over time for ICU patients.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Over the past few years, the rapid development of deep learning technologies for computer vision has greatly promoted the performance of medical image segmentation (MedISeg). However, the recent MedISeg publications usually focus on presentations of the major contributions (e.g., network architectures, training strategies, and loss functions) while unwittingly ignoring some marginal implementation details (also known as "tricks"), leading to a potential problem of the unfair experimental result comparisons. In this paper, we collect a series of MedISeg tricks for different model implementation phases (i.e., pre-training model, data pre-processing, data augmentation, model implementation, model inference, and result post-processing), and experimentally explore the effectiveness of these tricks on the consistent baseline models. Compared to paper-driven surveys that only blandly focus on the advantages and limitation analyses of segmentation models, our work provides a large number of solid experiments and is more technically operable. With the extensive experimental results on both the representative 2D and 3D medical image datasets, we explicitly clarify the effect of these tricks. Moreover, based on the surveyed tricks, we also open-sourced a strong MedISeg repository, where each of its components has the advantage of plug-and-play. We believe that this milestone work not only completes a comprehensive and complementary survey of the state-of-the-art MedISeg approaches, but also offers a practical guide for addressing the future medical image processing challenges including but not limited to small dataset learning, class imbalance learning, multi-modality learning, and domain adaptation. The code has been released at: //github.com/hust-linyi/MedISeg

As an effective strategy, data augmentation (DA) alleviates data scarcity scenarios where deep learning techniques may fail. It is widely applied in computer vision then introduced to natural language processing and achieves improvements in many tasks. One of the main focuses of the DA methods is to improve the diversity of training data, thereby helping the model to better generalize to unseen testing data. In this survey, we frame DA methods into three categories based on the diversity of augmented data, including paraphrasing, noising, and sampling. Our paper sets out to analyze DA methods in detail according to the above categories. Further, we also introduce their applications in NLP tasks as well as the challenges.

In light of the emergence of deep reinforcement learning (DRL) in recommender systems research and several fruitful results in recent years, this survey aims to provide a timely and comprehensive overview of the recent trends of deep reinforcement learning in recommender systems. We start with the motivation of applying DRL in recommender systems. Then, we provide a taxonomy of current DRL-based recommender systems and a summary of existing methods. We discuss emerging topics and open issues, and provide our perspective on advancing the domain. This survey serves as introductory material for readers from academia and industry into the topic and identifies notable opportunities for further research.

Influenced by the stunning success of deep learning in computer vision and language understanding, research in recommendation has shifted to inventing new recommender models based on neural networks. In recent years, we have witnessed significant progress in developing neural recommender models, which generalize and surpass traditional recommender models owing to the strong representation power of neural networks. In this survey paper, we conduct a systematic review on neural recommender models, aiming to summarize the field to facilitate future progress. Distinct from existing surveys that categorize existing methods based on the taxonomy of deep learning techniques, we instead summarize the field from the perspective of recommendation modeling, which could be more instructive to researchers and practitioners working on recommender systems. Specifically, we divide the work into three types based on the data they used for recommendation modeling: 1) collaborative filtering models, which leverage the key source of user-item interaction data; 2) content enriched models, which additionally utilize the side information associated with users and items, like user profile and item knowledge graph; and 3) context enriched models, which account for the contextual information associated with an interaction, such as time, location, and the past interactions. After reviewing representative works for each type, we finally discuss some promising directions in this field, including benchmarking recommender systems, graph reasoning based recommendation models, and explainable and fair recommendations for social good.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

北京阿比特科技有限公司