亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

As an indispensable ingredient of computer-assisted pronunciation training (CAPT), automatic pronunciation assessment (APA) plays a pivotal role in aiding self-directed language learners by providing multi-aspect and timely feedback. However, there are at least two potential obstacles that might hinder its performance for practical use. On one hand, most of the studies focus exclusively on leveraging segmental (phonetic)-level features such as goodness of pronunciation (GOP); this, however, may cause a discrepancy of feature granularity when performing suprasegmental (prosodic)-level pronunciation assessment. On the other hand, automatic pronunciation assessments still suffer from the lack of large-scale labeled speech data of non-native speakers, which inevitably limits the performance of pronunciation assessment. In this paper, we tackle these problems by integrating multiple prosodic and phonological features to provide a multi-view, multi-granularity, and multi-aspect (3M) pronunciation modeling. Specifically, we augment GOP with prosodic and self-supervised learning (SSL) features, and meanwhile develop a vowel/consonant positional embedding for a more phonology-aware automatic pronunciation assessment. A series of experiments conducted on the publicly-available speechocean762 dataset show that our approach can obtain significant improvements on several assessment granularities in comparison with previous work, especially on the assessment of speaking fluency and speech prosody.

相關內容

Controllable text simplification is a crucial assistive technique for language learning and teaching. One of the primary factors hindering its advancement is the lack of a corpus annotated with sentence difficulty levels based on language ability descriptions. To address this problem, we created the CEFR-based Sentence Profile (CEFR-SP) corpus, containing 17k English sentences annotated with the levels based on the Common European Framework of Reference for Languages assigned by English-education professionals. In addition, we propose a sentence-level assessment model to handle unbalanced level distribution because the most basic and highly proficient sentences are naturally scarce. In the experiments in this study, our method achieved a macro-F1 score of 84.5% in the level assessment, thus outperforming strong baselines employed in readability assessment.

One of the most important features of financial time series data is volatility. There are often structural changes in volatility over time, and an accurate estimation of the volatility of financial time series requires careful identification of change-points. A common approach to modeling the volatility of time series data is the well-known GARCH model. Although the problem of change-point estimation of volatility dynamics derived from the GARCH model has been considered in the literature, these approaches rely on parametric assumptions of the conditional error distribution, which are often violated in financial time series. This may lead to inaccuracies in change-point detection resulting in unreliable GARCH volatility estimates. This paper introduces a novel change-point detection algorithm based on a semiparametric GARCH model. The proposed method retains the structural advantages of the GARCH process while incorporating the flexibility of nonparametric conditional error distribution. The approach utilizes a penalized likelihood derived from a semiparametric GARCH model and an efficient binary segmentation algorithm. The results show that in terms of change-point estimation and detection accuracy, the semiparametric method outperforms the commonly used Quasi-MLE (QMLE) and other variations of GARCH models in wide-ranging scenarios.

Traditional temporal action detection (TAD) usually handles untrimmed videos with small number of action instances from a single label (e.g., ActivityNet, THUMOS). However, this setting might be unrealistic as different classes of actions often co-occur in practice. In this paper, we focus on the task of multi-label temporal action detection that aims to localize all action instances from a multi-label untrimmed video. Multi-label TAD is more challenging as it requires for fine-grained class discrimination within a single video and precise localization of the co-occurring instances. To mitigate this issue, we extend the sparse query-based detection paradigm from the traditional TAD and propose the multi-label TAD framework of PointTAD. Specifically, our PointTAD introduces a small set of learnable query points to represent the important frames of each action instance. This point-based representation provides a flexible mechanism to localize the discriminative frames at boundaries and as well the important frames inside the action. Moreover, we perform the action decoding process with the Multi-level Interactive Module to capture both point-level and instance-level action semantics. Finally, our PointTAD employs an end-to-end trainable framework simply based on RGB input for easy deployment. We evaluate our proposed method on two popular benchmarks and introduce the new metric of detection-mAP for multi-label TAD. Our model outperforms all previous methods by a large margin under the detection-mAP metric, and also achieves promising results under the segmentation-mAP metric. Code is available at //github.com/MCG-NJU/PointTAD.

Chinese spelling check (CSC) is a fundamental NLP task that detects and corrects spelling errors in Chinese texts. As most of these spelling errors are caused by phonetic similarity, effectively modeling the pronunciation of Chinese characters is a key factor for CSC. In this paper, we consider introducing an auxiliary task of Chinese pronunciation prediction (CPP) to improve CSC, and, for the first time, systematically discuss the adaptivity and granularity of this auxiliary task. We propose SCOPE which builds on top of a shared encoder two parallel decoders, one for the primary CSC task and the other for a fine-grained auxiliary CPP task, with a novel adaptive weighting scheme to balance the two tasks. In addition, we design a delicate iterative correction strategy for further improvements during inference. Empirical evaluation shows that SCOPE achieves new state-of-the-art on three CSC benchmarks, demonstrating the effectiveness and superiority of the auxiliary CPP task. Comprehensive ablation studies further verify the positive effects of adaptivity and granularity of the task. Code and data used in this paper are publicly available at //github.com/jiahaozhenbang/SCOPE.

The objective of this work is to develop a speaker recognition model to be used in diverse scenarios. We hypothesise that two components should be adequately configured to build such a model. First, adequate architecture would be required. We explore several recent state-of-the-art models, including ECAPA-TDNN and MFA-Conformer, as well as other baselines. Second, a massive amount of data would be required. We investigate several new training data configurations combining a few existing datasets. The most extensive configuration includes over 87k speakers' 10.22k hours of speech. Four evaluation protocols are adopted to measure how the trained model performs in diverse scenarios. Through experiments, we find that MFA-Conformer with the least inductive bias generalises the best. We also show that training with proposed large data configurations gives better performance. A boost in generalisation is observed, where the average performance on four evaluation protocols improves by more than 20%. In addition, we also demonstrate that these models' performances can improve even further when increasing capacity.

Feature fusion plays a crucial role in unconstrained face recognition where inputs (probes) comprise of a set of $N$ low quality images whose individual qualities vary. Advances in attention and recurrent modules have led to feature fusion that can model the relationship among the images in the input set. However, attention mechanisms cannot scale to large $N$ due to their quadratic complexity and recurrent modules suffer from input order sensitivity. We propose a two-stage feature fusion paradigm, Cluster and Aggregate, that can both scale to large $N$ and maintain the ability to perform sequential inference with order invariance. Specifically, Cluster stage is a linear assignment of $N$ inputs to $M$ global cluster centers, and Aggregation stage is a fusion over $M$ clustered features. The clustered features play an integral role when the inputs are sequential as they can serve as a summarization of past features. By leveraging the order-invariance of incremental averaging operation, we design an update rule that achieves batch-order invariance, which guarantees that the contributions of early image in the sequence do not diminish as time steps increase. Experiments on IJB-B and IJB-S benchmark datasets show the superiority of the proposed two-stage paradigm in unconstrained face recognition. Code and pretrained models are available in //github.com/mk-minchul/caface

Multi-view subspace clustering aims to discover the hidden subspace structures from multiple views for robust clustering, and has been attracting considerable attention in recent years. Despite significant progress, most of the previous multi-view subspace clustering algorithms are still faced with two limitations. First, they usually focus on the consistency (or commonness) of multiple views, yet often lack the ability to capture the cross-view inconsistencies in subspace representations. Second, many of them overlook the local structures of multiple views and cannot jointly leverage multiple local structures to enhance the subspace representation learning. To address these two limitations, in this paper, we propose a jointly smoothed multi-view subspace clustering (JSMC) approach. Specifically, we simultaneously incorporate the cross-view commonness and inconsistencies into the subspace representation learning. The view-consensus grouping effect is presented to jointly exploit the local structures of multiple views to regularize the view-commonness representation, which is further associated with the low-rank constraint via the nuclear norm to strengthen its cluster structure. Thus the cross-view commonness and inconsistencies, the view-consensus grouping effect, and the low-rank representation are seamlessly incorporated into a unified objective function, upon which an alternating optimization algorithm is performed to achieve a robust subspace representation for clustering. Experimental results on a variety of real-world multi-view datasets confirm the superiority of our approach.

While the Vision Transformer has been used in gait recognition, its application in multi-view gait recognition is still limited. Different views significantly affect the extraction and identification accuracy of the characteristics of gait contour. To address this, this paper proposes a Siamese Mobile Vision Transformer (SMViT). This model not only focuses on the local characteristics of the human gait space but also considers the characteristics of long-distance attention associations, which can extract multi-dimensional step status characteristics. In addition, it describes how different perspectives affect gait characteristics and generate reliable perspective feature relationship factors. The average recognition rate of SMViT on the CASIA B data set reached 96.4%. The experimental results show that SMViT can attain state-of-the-art performance compared to advanced step recognition models such as GaitGAN, Multi_view GAN, Posegait and other gait recognition models.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

Current deep learning research is dominated by benchmark evaluation. A method is regarded as favorable if it empirically performs well on the dedicated test set. This mentality is seamlessly reflected in the resurfacing area of continual learning, where consecutively arriving sets of benchmark data are investigated. The core challenge is framed as protecting previously acquired representations from being catastrophically forgotten due to the iterative parameter updates. However, comparison of individual methods is nevertheless treated in isolation from real world application and typically judged by monitoring accumulated test set performance. The closed world assumption remains predominant. It is assumed that during deployment a model is guaranteed to encounter data that stems from the same distribution as used for training. This poses a massive challenge as neural networks are well known to provide overconfident false predictions on unknown instances and break down in the face of corrupted data. In this work we argue that notable lessons from open set recognition, the identification of statistically deviating data outside of the observed dataset, and the adjacent field of active learning, where data is incrementally queried such that the expected performance gain is maximized, are frequently overlooked in the deep learning era. Based on these forgotten lessons, we propose a consolidated view to bridge continual learning, active learning and open set recognition in deep neural networks. Our results show that this not only benefits each individual paradigm, but highlights the natural synergies in a common framework. We empirically demonstrate improvements when alleviating catastrophic forgetting, querying data in active learning, selecting task orders, while exhibiting robust open world application where previously proposed methods fail.

北京阿比特科技有限公司