We introduce DynAMO, a reinforcement learning paradigm for Dynamic Anticipatory Mesh Optimization. Adaptive mesh refinement is an effective tool for optimizing computational cost and solution accuracy in numerical methods for partial differential equations. However, traditional adaptive mesh refinement approaches for time-dependent problems typically rely only on instantaneous error indicators to guide adaptivity. As a result, standard strategies often require frequent remeshing to maintain accuracy. In the DynAMO approach, multi-agent reinforcement learning is used to discover new local refinement policies that can anticipate and respond to future solution states by producing meshes that deliver more accurate solutions for longer time intervals. By applying DynAMO to discontinuous Galerkin methods for the linear advection and compressible Euler equations in two dimensions, we demonstrate that this new mesh refinement paradigm can outperform conventional threshold-based strategies while also generalizing to different mesh sizes, remeshing and simulation times, and initial conditions.
Purpose: To develop biophysics-based method for estimating perfusion Q from arterial spin labeling (ASL) images using deep learning. Methods: A 3D U-Net (QTMnet) was trained to estimate perfusion from 4D tracer propagation images. The network was trained and tested on simulated 4D tracer concentration data based on artificial vasculature structure generated by constrained constructive optimization (CCO) method. The trained network was further tested in a synthetic brain ASL image based on vasculature network extracted from magnetic resonance (MR) angiography. The estimations from both trained network and a conventional kinetic model were compared in ASL images acquired from eight healthy volunteers. Results: QTMnet accurately reconstructed perfusion Q from concentration data. Relative error of the synthetic brain ASL image was 7.04% for perfusion Q, lower than the error using single-delay ASL model: 25.15% for Q, and multi-delay ASL model: 12.62% for perfusion Q. Conclusion: QTMnet provides accurate estimation on perfusion parameters and is a promising approach as a clinical ASL MRI image processing pipeline.
From both an educational and research point of view, experiments on hardware are a key aspect of robotics and control. In the last decade, many open-source hardware and software frameworks for wheeled robots have been presented, mainly in the form of unicycles and car-like robots, with the goal of making robotics accessible to a wider audience and to support control systems development. Unicycles are usually small and inexpensive, and therefore facilitate experiments in a larger fleet, but they are not suited for high-speed motion. Car-like robots are more agile, but they are usually larger and more expensive, thus requiring more resources in terms of space and money. In order to bridge this gap, we present Chronos, a new car-like 1/28th scale robot with customized open-source electronics, and CRS, an open-source software framework for control and robotics. The CRS software framework includes the implementation of various state-of-the-art algorithms for control, estimation, and multi-agent coordination. With this work, we aim to provide easier access to hardware and reduce the engineering time needed to start new educational and research projects.
Efficient operation of intelligent machines in the real world requires methods that allow them to understand and predict the uncertainties presented by the unstructured environments with good accuracy, scalability and generalization, similar to humans. Current methods rely on pretrained networks instead of continuously learning from the dynamic signal properties of working environments and suffer inherent limitations, such as data-hungry procedures, and limited generalization capabilities. Herein, we present a memristor-based differential neuromorphic computing, perceptual signal processing and learning method for intelligent machines. The main features of environmental information such as amplification (>720%) and adaptation (<50%) of mechanical stimuli encoded in memristors, are extracted to obtain human-like processing in unstructured environments. The developed method takes advantage of the intrinsic multi-state property of memristors and exhibits good scalability and generalization, as confirmed by validation in two different application scenarios: object grasping and autonomous driving. In the former, a robot hand experimentally realizes safe and stable grasping through fast learning (in ~1 ms) the unknown object features (e.g., sharp corner and smooth surface) with a single memristor. In the latter, the decision-making information of 10 unstructured environments in autonomous driving (e.g., overtaking cars, pedestrians) is accurately (94%) extracted with a 40*25 memristor array. By mimicking the intrinsic nature of human low-level perception mechanisms, the electronic memristive neuromorphic circuit-based method, presented here shows the potential for adapting to diverse sensing technologies and helping intelligent machines generate smart high-level decisions in the real world.
Among the array of neural network architectures, the Vision Transformer (ViT) stands out as a prominent choice, acclaimed for its exceptional expressiveness and consistent high performance in various vision applications. Recently, the emerging Spiking ViT approach has endeavored to harness spiking neurons, paving the way for a more brain-inspired transformer architecture that thrives in ultra-low power operations on dedicated neuromorphic hardware. Nevertheless, this approach remains confined to spatial self-attention and doesn't fully unlock the potential of spiking neural networks. We introduce DISTA, a Denoising Spiking Transformer with Intrinsic Plasticity and SpatioTemporal Attention, designed to maximize the spatiotemporal computational prowess of spiking neurons, particularly for vision applications. DISTA explores two types of spatiotemporal attentions: intrinsic neuron-level attention and network-level attention with explicit memory. Additionally, DISTA incorporates an efficient nonlinear denoising mechanism to quell the noise inherent in computed spatiotemporal attention maps, thereby resulting in further performance gains. Our DISTA transformer undergoes joint training involving synaptic plasticity (i.e., weight tuning) and intrinsic plasticity (i.e., membrane time constant tuning) and delivers state-of-the-art performances across several static image and dynamic neuromorphic datasets. With only 6 time steps, DISTA achieves remarkable top-1 accuracy on CIFAR10 (96.26%) and CIFAR100 (79.15%), as well as 79.1% on CIFAR10-DVS using 10 time steps.
Complex and nonlinear dynamical systems often involve parameters that change with time, accurate tracking of which is essential to tasks such as state estimation, prediction, and control. Existing machine-learning methods require full state observation of the underlying system and tacitly assume adiabatic changes in the parameter. Formulating an inverse problem and exploiting reservoir computing, we develop a model-free and fully data-driven framework to accurately track time-varying parameters from partial state observation in real time. In particular, with training data from a subset of the dynamical variables of the system for a small number of known parameter values, the framework is able to accurately predict the parameter variations in time. Low- and high-dimensional, Markovian and non-Markovian nonlinear dynamical systems are used to demonstrate the power of the machine-learning based parameter-tracking framework. Pertinent issues affecting the tracking performance are addressed.
We consider a deep neural network estimator based on empirical risk minimization with l_1-regularization. We derive a general bound for its excess risk in regression and classification (including multiclass), and prove that it is adaptively nearly-minimax (up to log-factors) simultaneously across the entire range of various function classes.
By establishing an interesting connection between ordinary Bell polynomials and rational convolution powers, some composition and inverse relations of Bell polynomials as well as explicit expressions for convolution roots of sequences are obtained. Based on these results, a new method is proposed for calculation of partial Bell polynomials based on prime factorization. It is shown that this method is more efficient than the conventional recurrence procedure for computing Bell polynomials in most cases, requiring far less arithmetic operations. A detailed analysis of the computation complexity is provided, followed by some numerical evaluations.
Incorporating prior knowledge into pre-trained language models has proven to be effective for knowledge-driven NLP tasks, such as entity typing and relation extraction. Current pre-training procedures usually inject external knowledge into models by using knowledge masking, knowledge fusion and knowledge replacement. However, factual information contained in the input sentences have not been fully mined, and the external knowledge for injecting have not been strictly checked. As a result, the context information cannot be fully exploited and extra noise will be introduced or the amount of knowledge injected is limited. To address these issues, we propose MLRIP, which modifies the knowledge masking strategies proposed by ERNIE-Baidu, and introduce a two-stage entity replacement strategy. Extensive experiments with comprehensive analyses illustrate the superiority of MLRIP over BERT-based models in military knowledge-driven NLP tasks.
The Evidential regression network (ENet) estimates a continuous target and its predictive uncertainty without costly Bayesian model averaging. However, it is possible that the target is inaccurately predicted due to the gradient shrinkage problem of the original loss function of the ENet, the negative log marginal likelihood (NLL) loss. In this paper, the objective is to improve the prediction accuracy of the ENet while maintaining its efficient uncertainty estimation by resolving the gradient shrinkage problem. A multi-task learning (MTL) framework, referred to as MT-ENet, is proposed to accomplish this aim. In the MTL, we define the Lipschitz modified mean squared error (MSE) loss function as another loss and add it to the existing NLL loss. The Lipschitz modified MSE loss is designed to mitigate the gradient conflict with the NLL loss by dynamically adjusting its Lipschitz constant. By doing so, the Lipschitz MSE loss does not disturb the uncertainty estimation of the NLL loss. The MT-ENet enhances the predictive accuracy of the ENet without losing uncertainty estimation capability on the synthetic dataset and real-world benchmarks, including drug-target affinity (DTA) regression. Furthermore, the MT-ENet shows remarkable calibration and out-of-distribution detection capability on the DTA benchmarks.
Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.