We study the problem of efficiently summarizing a short video into several keyframes, leveraging recent progress in fast graph sampling. Specifically, we first construct a similarity path graph (SPG) $\mathcal{G}$, represented by graph Laplacian matrix $\mathbf{L}$, where the similarities between adjacent frames are encoded as positive edge weights. We show that maximizing the smallest eigenvalue $\lambda_{\min}(\mathbf{B})$ of a coefficient matrix $\mathbf{B} = \text{diag}(\mathbf{a}) + \mu \mathbf{L}$, where $\mathbf{a}$ is the binary keyframe selection vector, is equivalent to minimizing a worst-case signal reconstruction error. We prove that, after partitioning $\mathcal{G}$ into $Q$ sub-graphs $\{\mathcal{G}^q\}^Q_{q=1}$, the smallest Gershgorin circle theorem (GCT) lower bound of $Q$ corresponding coefficient matrices -- $\min_q \lambda^-_{\min}(\mathbf{B}^q)$ -- is a lower bound for $\lambda_{\min}(\mathbf{B})$. This inspires a fast graph sampling algorithm to iteratively partition $\mathcal{G}$ into $Q$ sub-graphs using $Q$ samples (keyframes), while maximizing $\lambda^-_{\min}(\mathbf{B}^q)$ for each sub-graph $\mathcal{G}^q$. Experimental results show that our algorithm achieves comparable video summarization performance as state-of-the-art methods, at a substantially reduced complexity.
We developed a flexible parallel algorithm for graph summarization based on vertex-centric programming and parameterized message passing. The base algorithm supports infinitely many structural graph summary models defined in a formal language. An extension of the parallel base algorithm allows incremental graph summarization. In this paper, we prove that the incremental algorithm is correct and show that updates are performed in time $\mathcal{O}(\Delta \cdot d^k)$, where $\Delta$ is the number of additions, deletions, and modifications to the input graph, $d$ the maximum degree, and $k$ is the maximum distance in the subgraphs considered. Although the iterative algorithm supports values of $k>1$, it requires nested data structures for the message passing that are memory-inefficient. Thus, we extended the base summarization algorithm by a hash-based messaging mechanism to support a scalable iterative computation of graph summarizations based on $k$-bisimulation for arbitrary $k$. We empirically evaluate the performance of our algorithms using benchmark and real-world datasets. The incremental algorithm almost always outperforms the batch computation. We observe in our experiments that the incremental algorithm is faster even in cases when $50\%$ of the graph database changes from one version to the next. The incremental computation requires a three-layered hash index, which has a low memory overhead of only $8\%$ ($\pm 1\%$). Finally, the incremental summarization algorithm outperforms the batch algorithm even with fewer cores. The iterative parallel $k$-bisimulation algorithm computes summaries on graphs with over $10$M edges within seconds. We show that the algorithm processes graphs of $100+\,$M edges within a few minutes while having a moderate memory consumption of $<150$ GB. For the largest BSBM1B dataset with 1 billion edges, it computes $k=10$ bisimulation in under an hour.
We develop a multigrid solver for the second biharmonic problem in the context of Isogeometric Analysis (IgA), where we also allow a zero-order term. In a previous paper, the authors have developed an analysis for the first biharmonic problem based on Hackbusch's framework. This analysis can only be extended to the second biharmonic problem if one assumes uniform grids. In this paper, we prove a multigrid convergence estimate using Bramble's framework for multigrid analysis without regularity assumptions. We show that the bound for the convergence rate is independent of the scaling of the zero-order term and the spline degree. It only depends linearly on the number of levels, thus logarithmically on the grid size. Numerical experiments are provided which illustrate the convergence theory and the efficiency of the proposed multigrid approaches.
We study the classical expander codes, introduced by Sipser and Spielman \cite{SS96}. Given any constants $0< \alpha, \varepsilon < 1/2$, and an arbitrary bipartite graph with $N$ vertices on the left, $M < N$ vertices on the right, and left degree $D$ such that any left subset $S$ of size at most $\alpha N$ has at least $(1-\varepsilon)|S|D$ neighbors, we show that the corresponding linear code given by parity checks on the right has distance at least roughly $\frac{\alpha N}{2 \varepsilon }$. This is strictly better than the best known previous result of $2(1-\varepsilon ) \alpha N$ \cite{Sudan2000note, Viderman13b} whenever $\varepsilon < 1/2$, and improves the previous result significantly when $\varepsilon $ is small. Furthermore, we show that this distance is tight in general, thus providing a complete characterization of the distance of general expander codes. Next, we provide several efficient decoding algorithms, which vastly improve previous results in terms of the fraction of errors corrected, whenever $\varepsilon < \frac{1}{4}$. Finally, we also give a bound on the list-decoding radius of general expander codes, which beats the classical Johnson bound in certain situations (e.g., when the graph is almost regular and the code has a high rate). Our techniques exploit novel combinatorial properties of bipartite expander graphs. In particular, we establish a new size-expansion tradeoff, which may be of independent interests.
We consider the inverse conductivity problem with discontinuous conductivities. We show in a rigorous way, by a convergence analysis, that one can construct a completely discrete minimization problem whose solution is a good approximation of a solution to the inverse problem. The minimization problem contains a regularization term which is given by a total variation penalization and is characterized by a regularization parameter. The discretization involves at the same time the boundary measurements, by the use of the complete electrode model, the unknown conductivity and the solution to the direct problem. The electrodes are characterized by a parameter related to their size, which in turn controls the number of electrodes to be used. The discretization of the unknown and of the solution to the direct problem is characterized by another parameter related to the size of the mesh involved. In our analysis we show how to precisely choose the regularization, electrodes size and mesh size parameters with respect to the noise level in such a way that the solution to the discrete regularized problem is meaningful. In particular we obtain that the electrodes and mesh size parameters should decay polynomially with respect to the noise level.
We present a novel approach to unsupervised learning for video object segmentation (VOS). Unlike previous work, our formulation allows to learn dense feature representations directly in a fully convolutional regime. We rely on uniform grid sampling to extract a set of anchors and train our model to disambiguate between them on both inter- and intra-video levels. However, a naive scheme to train such a model results in a degenerate solution. We propose to prevent this with a simple regularisation scheme, accommodating the equivariance property of the segmentation task to similarity transformations. Our training objective admits efficient implementation and exhibits fast training convergence. On established VOS benchmarks, our approach exceeds the segmentation accuracy of previous work despite using significantly less training data and compute power.
We present and analyze a momentum-based gradient method for training linear classifiers with an exponentially-tailed loss (e.g., the exponential or logistic loss), which maximizes the classification margin on separable data at a rate of $\widetilde{\mathcal{O}}(1/t^2)$. This contrasts with a rate of $\mathcal{O}(1/\log(t))$ for standard gradient descent, and $\mathcal{O}(1/t)$ for normalized gradient descent. This momentum-based method is derived via the convex dual of the maximum-margin problem, and specifically by applying Nesterov acceleration to this dual, which manages to result in a simple and intuitive method in the primal. This dual view can also be used to derive a stochastic variant, which performs adaptive non-uniform sampling via the dual variables.
Graph representation learning has recently been applied to a broad spectrum of problems ranging from computer graphics and chemistry to high energy physics and social media. The popularity of graph neural networks has sparked interest, both in academia and in industry, in developing methods that scale to very large graphs such as Facebook or Twitter social networks. In most of these approaches, the computational cost is alleviated by a sampling strategy retaining a subset of node neighbors or subgraphs at training time. In this paper we propose a new, efficient and scalable graph deep learning architecture which sidesteps the need for graph sampling by using graph convolutional filters of different size that are amenable to efficient precomputation, allowing extremely fast training and inference. Our architecture allows using different local graph operators (e.g. motif-induced adjacency matrices or Personalized Page Rank diffusion matrix) to best suit the task at hand. We conduct extensive experimental evaluation on various open benchmarks and show that our approach is competitive with other state-of-the-art architectures, while requiring a fraction of the training and inference time.
Graph convolution is the core of most Graph Neural Networks (GNNs) and usually approximated by message passing between direct (one-hop) neighbors. In this work, we remove the restriction of using only the direct neighbors by introducing a powerful, yet spatially localized graph convolution: Graph diffusion convolution (GDC). GDC leverages generalized graph diffusion, examples of which are the heat kernel and personalized PageRank. It alleviates the problem of noisy and often arbitrarily defined edges in real graphs. We show that GDC is closely related to spectral-based models and thus combines the strengths of both spatial (message passing) and spectral methods. We demonstrate that replacing message passing with graph diffusion convolution consistently leads to significant performance improvements across a wide range of models on both supervised and unsupervised tasks and a variety of datasets. Furthermore, GDC is not limited to GNNs but can trivially be combined with any graph-based model or algorithm (e.g. spectral clustering) without requiring any changes to the latter or affecting its computational complexity. Our implementation is available online.
We present SlowFast networks for video recognition. Our model involves (i) a Slow pathway, operating at low frame rate, to capture spatial semantics, and (ii) a Fast pathway, operating at high frame rate, to capture motion at fine temporal resolution. The Fast pathway can be made very lightweight by reducing its channel capacity, yet can learn useful temporal information for video recognition. Our models achieve strong performance for both action classification and detection in video, and large improvements are pin-pointed as contributions by our SlowFast concept. We report state-of-the-art accuracy on major video recognition benchmarks, Kinetics, Charades and AVA. Code will be made publicly available in PyTorch.
Many real-world problems can be represented as graph-based learning problems. In this paper, we propose a novel framework for learning spatial and attentional convolution neural networks on arbitrary graphs. Different from previous convolutional neural networks on graphs, we first design a motif-matching guided subgraph normalization method to capture neighborhood information. Then we implement subgraph-level self-attentional layers to learn different importances from different subgraphs to solve graph classification problems. Analogous to image-based attentional convolution networks that operate on locally connected and weighted regions of the input, we also extend graph normalization from one-dimensional node sequence to two-dimensional node grid by leveraging motif-matching, and design self-attentional layers without requiring any kinds of cost depending on prior knowledge of the graph structure. Our results on both bioinformatics and social network datasets show that we can significantly improve graph classification benchmarks over traditional graph kernel and existing deep models.