Deep neural networks often face generalization problems to handle out-of-distribution (OOD) data, and there remains a notable theoretical gap between the contributing factors and their respective impacts. Literature evidence from in-distribution data has suggested that generalization error can shrink if the size of mixture data for training increases. However, when it comes to OOD samples, this conventional understanding does not hold anymore -- Increasing the size of training data does not always lead to a reduction in the test generalization error. In fact, diverse trends of the errors have been found across various shifting scenarios including those decreasing trends under a power-law pattern, initial declines followed by increases, or continuous stable patterns. Previous work has approached OOD data qualitatively, treating them merely as samples unseen during training, which are hard to explain the complicated non-monotonic trends. In this work, we quantitatively redefine OOD data as those situated outside the convex hull of mixed training data and establish novel generalization error bounds to comprehend the counterintuitive observations better. Our proof of the new risk bound agrees that the efficacy of well-trained models can be guaranteed for unseen data within the convex hull; More interestingly, but for OOD data beyond this coverage, the generalization cannot be ensured, which aligns with our observations. Furthermore, we attempted various OOD techniques to underscore that our results not only explain insightful observations in recent OOD generalization work, such as the significance of diverse data and the sensitivity to unseen shifts of existing algorithms, but it also inspires a novel and effective data selection strategy.
Diffusion models can learn strong image priors from underlying data distribution and use them to solve inverse problems, but the training process is computationally expensive and requires lots of data. Such bottlenecks prevent most existing works from being feasible for high-dimensional and high-resolution data such as 3D images. This paper proposes a method to learn an efficient data prior for the entire image by training diffusion models only on patches of images. Specifically, we propose a patch-based position-aware diffusion inverse solver, called PaDIS, where we obtain the score function of the whole image through scores of patches and their positional encoding and utilize this as the prior for solving inverse problems. First of all, we show that this diffusion model achieves an improved memory efficiency and data efficiency while still maintaining the capability to generate entire images via positional encoding. Additionally, the proposed PaDIS model is highly flexible and can be plugged in with different diffusion inverse solvers (DIS). We demonstrate that the proposed PaDIS approach enables solving various inverse problems in both natural and medical image domains, including CT reconstruction, deblurring, and superresolution, given only patch-based priors. Notably, PaDIS outperforms previous DIS methods trained on entire image priors in the case of limited training data, demonstrating the data efficiency of our proposed approach by learning patch-based prior.
We present a method to integrate real-time out-of-distribution (OOD) detection for neural network trajectory predictors, and to adapt the control strategy of a robot (e.g., a self-driving car or drone) to preserve safety while operating in OOD regimes. Specifically, we use a neural network ensemble to predict the trajectory for a dynamic obstacle (such as a pedestrian), and use the maximum singular value of the empirical covariance among the ensemble as a signal for OOD detection. We calibrate this signal with a small fraction of held-out training data using the methodology of conformal prediction, to derive an OOD detector with probabilistic guarantees on the false-positive rate of the detector, given a user-specified confidence level. During in-distribution operation, we use an MPC controller to avoid collisions with the obstacle based on the trajectory predicted by the neural network ensemble. When OOD conditions are detected, we switch to a reachability-based controller to guarantee safety under the worst-case actions of the obstacle. We verify our method in extensive autonomous driving simulations in a pedestrian crossing scenario, showing that our OOD detector obtains the desired accuracy rate within a theoretically-predicted range. We also demonstrate the effectiveness of our method with real pedestrian data. We show improved safety and less conservatism in comparison with two state-of-the-art methods that also use conformal prediction, but without OOD adaptation.
Machine unlearning strives to uphold the data owners' right to be forgotten by enabling models to selectively forget specific data. Recent advances suggest precomputing and storing statistics extracted from second-order information and implementing unlearning through Newton-style updates. However, the theoretical analysis of these works often depends on restrictive assumptions of convexity and smoothness, and those mentioned operations on Hessian matrix are extremely costly. As a result, applying these works to high-dimensional models becomes challenging. In this paper, we propose an efficient Hessian-free certified unlearning. We propose to maintain a statistical vector for each data, computed through affine stochastic recursion approximation of the difference between retrained and learned models. Our analysis does not involve inverting Hessian and thus can be extended to non-convex non-smooth objectives. Under same assumptions, we demonstrate advancements of proposed method beyond the state-of-the-art theoretical studies, in terms of generalization, unlearning guarantee, deletion capacity, and computation/storage complexity, and we show that the unlearned model of our proposed approach is close to or same as the retrained model. Based on the strategy of recollecting statistics for forgetting data, we develop an algorithm that achieves near-instantaneous unlearning as it only requires a vector addition operation. Experiments demonstrate that the proposed scheme surpasses existing results by orders of magnitude in terms of time/storage costs, while also enhancing accuracy.
Recent strides in nonlinear model predictive control (NMPC) underscore a dependence on numerical advancements to efficiently and accurately solve large-scale problems. Given the substantial number of variables characterizing typical whole-body optimal control (OC) problems - often numbering in the thousands - exploiting the sparse structure of the numerical problem becomes crucial to meet computational demands, typically in the range of a few milliseconds. Addressing the linear-quadratic regulator (LQR) problem is a fundamental building block for computing Newton or Sequential Quadratic Programming (SQP) steps in direct optimal control methods. This paper concentrates on equality-constrained problems featuring implicit system dynamics and dual regularization, a characteristic of advanced interiorpoint or augmented Lagrangian solvers. Here, we introduce a parallel algorithm for solving an LQR problem with dual regularization. Leveraging a rewriting of the LQR recursion through block elimination, we first enhanced the efficiency of the serial algorithm and then subsequently generalized it to handle parametric problems. This extension enables us to split decision variables and solve multiple subproblems concurrently. Our algorithm is implemented in our nonlinear numerical optimal control library ALIGATOR. It showcases improved performance over previous serial formulations and we validate its efficacy by deploying it in the model predictive control of a real quadruped robot.
The generalization bound is a crucial theoretical tool for assessing the generalizability of learning methods and there exist vast literatures on generalizability of normal learning, adversarial learning, and data poisoning. Unlike other data poison attacks, the backdoor attack has the special property that the poisoned triggers are contained in both the training set and the test set and the purpose of the attack is two-fold. To our knowledge, the generalization bound for the backdoor attack has not been established. In this paper, we fill this gap by deriving algorithm-independent generalization bounds in the clean-label backdoor attack scenario. Precisely, based on the goals of backdoor attack, we give upper bounds for the clean sample population errors and the poison population errors in terms of the empirical error on the poisoned training dataset. Furthermore, based on the theoretical result, a new clean-label backdoor attack is proposed that computes the poisoning trigger by combining adversarial noise and indiscriminate poison. We show its effectiveness in a variety of settings.
With the emergence of privacy leaks in federated learning, secure aggregation protocols that mainly adopt either homomorphic encryption or threshold secret sharing have been widely developed for federated learning to protect the privacy of the local training data of each client. However, these existing protocols suffer from many shortcomings, such as the dependence on a trusted third party, the vulnerability to clients being corrupted, low efficiency, the trade-off between security and fault tolerance, etc. To solve these disadvantages, we propose an efficient and multi-private key secure aggregation scheme for federated learning. Specifically, we skillfully modify the variant ElGamal encryption technique to achieve homomorphic addition operation, which has two important advantages: 1) The server and each client can freely select public and private keys without introducing a trust third party and 2) Compared to the variant ElGamal encryption, the plaintext space is relatively large, which is more suitable for the deep model. Besides, for the high dimensional deep model parameter, we introduce a super-increasing sequence to compress multi-dimensional data into 1-D, which can greatly reduce encryption and decryption times as well as communication for ciphertext transmission. Detailed security analyses show that our proposed scheme achieves the semantic security of both individual local gradients and the aggregated result while achieving optimal robustness in tolerating both client collusion and dropped clients. Extensive simulations demonstrate that the accuracy of our scheme is almost the same as the non-private approach, while the efficiency of our scheme is much better than the state-of-the-art homomorphic encryption-based secure aggregation schemes. More importantly, the efficiency advantages of our scheme will become increasingly prominent as the number of model parameters increases.
The success of AI models relies on the availability of large, diverse, and high-quality datasets, which can be challenging to obtain due to data scarcity, privacy concerns, and high costs. Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns. This paper provides an overview of synthetic data research, discussing its applications, challenges, and future directions. We present empirical evidence from prior art to demonstrate its effectiveness and highlight the importance of ensuring its factuality, fidelity, and unbiasedness. We emphasize the need for responsible use of synthetic data to build more powerful, inclusive, and trustworthy language models.
Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.
Ensembles over neural network weights trained from different random initialization, known as deep ensembles, achieve state-of-the-art accuracy and calibration. The recently introduced batch ensembles provide a drop-in replacement that is more parameter efficient. In this paper, we design ensembles not only over weights, but over hyperparameters to improve the state of the art in both settings. For best performance independent of budget, we propose hyper-deep ensembles, a simple procedure that involves a random search over different hyperparameters, themselves stratified across multiple random initializations. Its strong performance highlights the benefit of combining models with both weight and hyperparameter diversity. We further propose a parameter efficient version, hyper-batch ensembles, which builds on the layer structure of batch ensembles and self-tuning networks. The computational and memory costs of our method are notably lower than typical ensembles. On image classification tasks, with MLP, LeNet, and Wide ResNet 28-10 architectures, our methodology improves upon both deep and batch ensembles.
Recently, deep multiagent reinforcement learning (MARL) has become a highly active research area as many real-world problems can be inherently viewed as multiagent systems. A particularly interesting and widely applicable class of problems is the partially observable cooperative multiagent setting, in which a team of agents learns to coordinate their behaviors conditioning on their private observations and commonly shared global reward signals. One natural solution is to resort to the centralized training and decentralized execution paradigm. During centralized training, one key challenge is the multiagent credit assignment: how to allocate the global rewards for individual agent policies for better coordination towards maximizing system-level's benefits. In this paper, we propose a new method called Q-value Path Decomposition (QPD) to decompose the system's global Q-values into individual agents' Q-values. Unlike previous works which restrict the representation relation of the individual Q-values and the global one, we leverage the integrated gradient attribution technique into deep MARL to directly decompose global Q-values along trajectory paths to assign credits for agents. We evaluate QPD on the challenging StarCraft II micromanagement tasks and show that QPD achieves the state-of-the-art performance in both homogeneous and heterogeneous multiagent scenarios compared with existing cooperative MARL algorithms.