亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

StorSeismic is a recently introduced model based on the Transformer to adapt to various seismic processing tasks through its pretraining and fine-tuning training strategy. In the original implementation, StorSeismic utilized a sinusoidal positional encoding and a conventional self-attention mechanism, both borrowed from the natural language processing (NLP) applications. For seismic processing they admitted good results, but also hinted to limitations in efficiency and expressiveness. We propose modifications to these two key components, by utilizing relative positional encoding and low-rank attention matrices as replacements to the vanilla ones. The proposed changes are tested on processing tasks applied to a realistic Marmousi and offshore field data as a sequential strategy, starting from denoising, direct arrival removal, multiple attenuation, and finally root-mean-squared velocity ($V_{RMS}$) prediction for normal moveout (NMO) correction. We observe faster pretraining and competitive results on the fine-tuning tasks and, additionally, fewer parameters to train compared to the vanilla model.

相關內容

 Processing 是一門開源編程語言和與之配套的集成開發環境(IDE)的名稱。Processing 在電子藝術和視覺設計社區被用來教授編程基礎,并運用于大量的新媒體和互動藝術作品中。

We introduce a flexible method to simultaneously infer both the drift and volatility functions of a discretely observed scalar diffusion. We introduce spline bases to represent these functions and develop a Markov chain Monte Carlo algorithm to infer, a posteriori, the coefficients of these functions in the spline basis. A key innovation is that we use spline bases to model transformed versions of the drift and volatility functions rather than the functions themselves. The output of the algorithm is a posterior sample of plausible drift and volatility functions that are not constrained to any particular parametric family. The flexibility of this approach provides practitioners a powerful investigative tool, allowing them to posit a variety of parametric models to better capture the underlying dynamics of their processes of interest. We illustrate the versatility of our method by applying it to challenging datasets from finance, paleoclimatology, and astrophysics. In view of the parametric diffusion models widely employed in the literature for those examples, some of our results are surprising since they call into question some aspects of these models.

An arc-search interior-point method is a type of interior-point methods that approximates the central path by an ellipsoidal arc, and it can often reduce the number of iterations. In this work, to further reduce the number of iterations and computation time for solving linear programming problems, we propose two arc-search interior-point methods using Nesterov's restarting strategy that is well-known method to accelerate the gradient method with a momentum term. The first one generates a sequence of iterations in the neighborhood, and we prove that the convergence of the generated sequence to an optimal solution and the computation complexity is polynomial time. The second one incorporates the concept of the Mehrotra-type interior-point method to improve numerical performance. The numerical experiments demonstrate that the second one reduced the number of iterations and computational time. In particular, the average number of iterations was reduced compared to existing interior-point methods due to the momentum term.

StreamBed is a capacity planning system for stream processing. It predicts, ahead of any production deployment, the resources that a query will require to process an incoming data rate sustainably, and the appropriate configuration of these resources. StreamBed builds a capacity planning model by piloting a series of runs of the target query in a small-scale, controlled testbed. We implement StreamBed for the popular Flink DSP engine. Our evaluation with large-scale queries of the Nexmark benchmark demonstrates that StreamBed can effectively and accurately predict capacity requirements for jobs spanning more than 1,000 cores using a testbed of only 48 cores.

The growth of dendritic grains during solidification is often modelled using the Grain Envelope Model (GEM), in which the envelope of the dendrite is an interface tracked by the Phase Field Interface Capturing (PFIC) method. In the PFIC method, an phase-field equation is solved on a fixed mesh to track the position of the envelope. While being versatile and robust, PFIC introduces certain numerical artefacts. In this work, we present an alternative approach for the solution of the GEM that employs a Meshless (sharp) Interface Tracking (MIT) formulation, which uses direct, artefact-free interface tracking. In the MIT, the envelope (interface) is defined as a moving domain boundary and the interface-tracking nodes are boundary nodes for the diffusion problem solved in the domain. To increase the accuracy of the method for the diffusion-controlled moving-boundary problem, an \h-adaptive spatial discretization is used, thus, the node spacing is refined in the vicinity of the envelope. MIT combines a parametric surface reconstruction, a mesh-free discretization of the parametric surfaces and the space enclosed by them, and a high-order approximation of the partial differential operators and of the solute concentration field using radial basis functions augmented with monomials. The proposed method is demonstrated on a two-dimensional \h-adaptive solution of the diffusive growth of dendrite and evaluated by comparing the results to the PFIC approach. It is shown that MIT can reproduce the results calculated with PFIC, that it is convergent and that it can capture more details in the envelope shape than PFIC with a similar spatial discretization.

We present ReCAT, a recursive composition augmented Transformer that is able to explicitly model hierarchical syntactic structures of raw texts without relying on gold trees during both learning and inference. Existing research along this line restricts data to follow a hierarchical tree structure and thus lacks inter-span communications. To overcome the problem, we propose a novel contextual inside-outside (CIO) layer that learns contextualized representations of spans through bottom-up and top-down passes, where a bottom-up pass forms representations of high-level spans by composing low-level spans, while a top-down pass combines information inside and outside a span. By stacking several CIO layers between the embedding layer and the attention layers in Transformer, the ReCAT model can perform both deep intra-span and deep inter-span interactions, and thus generate multi-grained representations fully contextualized with other spans. Moreover, the CIO layers can be jointly pre-trained with Transformers, making ReCAT enjoy scaling ability, strong performance, and interpretability at the same time. We conduct experiments on various sentence-level and span-level tasks. Evaluation results indicate that ReCAT can significantly outperform vanilla Transformer models on all span-level tasks and baselines that combine recursive networks with Transformers on natural language inference tasks. More interestingly, the hierarchical structures induced by ReCAT exhibit strong consistency with human-annotated syntactic trees, indicating good interpretability brought by the CIO layers.

The problem of multi-object tracking (MOT) consists in detecting and tracking all the objects in a video sequence while keeping a unique identifier for each object. It is a challenging and fundamental problem for robotics. In precision agriculture the challenge of achieving a satisfactory solution is amplified by extreme camera motion, sudden illumination changes, and strong occlusions. Most modern trackers rely on the appearance of objects rather than motion for association, which can be ineffective when most targets are static objects with the same appearance, as in the agricultural case. To this end, on the trail of SORT [5], we propose AgriSORT, a simple, online, real-time tracking-by-detection pipeline for precision agriculture based only on motion information that allows for accurate and fast propagation of tracks between frames. The main focuses of AgriSORT are efficiency, flexibility, minimal dependencies, and ease of deployment on robotic platforms. We test the proposed pipeline on a novel MOT benchmark specifically tailored for the agricultural context, based on video sequences taken in a table grape vineyard, particularly challenging due to strong self-similarity and density of the instances. Both the code and the dataset are available for future comparisons.

We evaluate Julia as a single language and ecosystem paradigm powered by LLVM to develop workflow components for high-performance computing. We run a Gray-Scott, 2-variable diffusion-reaction application using a memory-bound, 7-point stencil kernel on Frontier, the US Department of Energy's first exascale supercomputer. We evaluate the performance, scaling, and trade-offs of (i) the computational kernel on AMD's MI250x GPUs, (ii) weak scaling up to 4,096 MPI processes/GPUs or 512 nodes, (iii) parallel I/O writes using the ADIOS2 library bindings, and (iv) Jupyter Notebooks for interactive analysis. Results suggest that although Julia generates a reasonable LLVM-IR, a nearly 50% performance difference exists vs. native AMD HIP stencil codes when running on the GPUs. As expected, we observed near-zero overhead when using MPI and parallel I/O bindings for system-wide installed implementations. Consequently, Julia emerges as a compelling high-performance and high-productivity workflow composition language, as measured on the fastest supercomputer in the world.

Invariance has recently proven to be a powerful inductive bias in machine learning models. One such class of predictive or generative models are tensor networks. We introduce a new numerical algorithm to construct a basis of tensors that are invariant under the action of normal matrix representations of an arbitrary discrete group. This method can be up to several orders of magnitude faster than previous approaches. The group-invariant tensors are then combined into a group-invariant tensor train network, which can be used as a supervised machine learning model. We applied this model to a protein binding classification problem, taking into account problem-specific invariances, and obtained prediction accuracy in line with state-of-the-art deep learning approaches.

We show how quantum-inspired 2d tensor networks can be used to efficiently and accurately simulate the largest quantum processors from IBM, namely Eagle (127 qubits), Osprey (433 qubits) and Condor (1121 qubits). We simulate the dynamics of a complex quantum many-body system -- specifically, the kicked Ising experiment considered recently by IBM in Nature 618, p. 500-505 (2023) -- using graph-based Projected Entangled Pair States (gPEPS), which was proposed by some of us in PRB 99, 195105 (2019). Our results show that simple tensor updates are already sufficient to achieve very large unprecedented accuracy with remarkably low computational resources for this model. Apart from simulating the original experiment for 127 qubits, we also extend our results to 433 and 1121 qubits, thus setting a benchmark for the newest IBM quantum machines. We also report accurate simulations for infinitely-many qubits. Our results show that gPEPS are a natural tool to efficiently simulate quantum computers with an underlying lattice-based qubit connectivity, such as all quantum processors based on superconducting qubits.

Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.

北京阿比特科技有限公司