亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

On December 7, 2020, Ghanaians participated in the polls to determine their president for the next four years. To gain insights from this presidential election, we conducted stance analysis (which is not always equivalent to sentiment analysis) to understand how Twitter, a popular social media platform, reflected the opinions of its users regarding the two main presidential candidates. We collected a total of 99,356 tweets using the Twitter API (Tweepy) and manually annotated 3,090 tweets into three classes: Against, Neutral, and Support. We then performed preprocessing on the tweets. The resulting dataset was evaluated using two lexicon-based approaches, VADER and TextBlob, as well as five supervised machine learning-based approaches: Support Vector Machine (SVM), Logistic Regression (LR), Multinomial Na\"ive Bayes (MNB), Stochastic Gradient Descent (SGD), and Random Forest (RF), based on metrics such as accuracy, precision, recall, and F1-score. The best performance was achieved by Logistic Regression with an accuracy of 71.13%. We utilized Logistic Regression to classify all the extracted tweets and subsequently conducted an analysis and discussion of the results. For access to our data and code, please visit: //github.com/ShesterG/Stance-Detection-Ghana-2020-Elections.git

相關內容

This brief research report analyzes the availability of Digital Object Identifiers (DOIs) worldwide, highlighting the dominance of large publishing houses and the need for unique persistent identifiers to increase the visibility of publications from developing countries. The study reveals that a considerable amount of publications from developing countries are excluded from the global flow of scientific information due to the absence of DOIs, emphasizing the need for alternative publishing models. The authors suggest that the availability of DOIs should receive more attention in scholarly communication and scientometrics, contributing to a necessary debate on DOIs relevant for librarians, publishers, and scientometricians.

We present SCULPT, a novel 3D generative model for clothed and textured 3D meshes of humans. Specifically, we devise a deep neural network that learns to represent the geometry and appearance distribution of clothed human bodies. Training such a model is challenging, as datasets of textured 3D meshes for humans are limited in size and accessibility. Our key observation is that there exist medium-sized 3D scan datasets like CAPE, as well as large-scale 2D image datasets of clothed humans and multiple appearances can be mapped to a single geometry. To effectively learn from the two data modalities, we propose an unpaired learning procedure for pose-dependent clothed and textured human meshes. Specifically, we learn a pose-dependent geometry space from 3D scan data. We represent this as per vertex displacements w.r.t. the SMPL model. Next, we train a geometry conditioned texture generator in an unsupervised way using the 2D image data. We use intermediate activations of the learned geometry model to condition our texture generator. To alleviate entanglement between pose and clothing type, and pose and clothing appearance, we condition both the texture and geometry generators with attribute labels such as clothing types for the geometry, and clothing colors for the texture generator. We automatically generated these conditioning labels for the 2D images based on the visual question answering model BLIP and CLIP. We validate our method on the SCULPT dataset, and compare to state-of-the-art 3D generative models for clothed human bodies. We will release the codebase for research purposes.

With the emergence of Cloud computing, Internet of Things-enabled Human-Computer Interfaces, Generative Artificial Intelligence, and high-accurate Machine and Deep-learning recognition and predictive models, along with the Post Covid-19 proliferation of social networking, and remote communications, the Metaverse gained a lot of popularity. Metaverse has the prospective to extend the physical world using virtual and augmented reality so the users can interact seamlessly with the real and virtual worlds using avatars and holograms. It has the potential to impact people in the way they interact on social media, collaborate in their work, perform marketing and business, teach, learn, and even access personalized healthcare. Several works in the literature examine Metaverse in terms of hardware wearable devices, and virtual reality gaming applications. However, the requirements of realizing the Metaverse in realtime and at a large-scale need yet to be examined for the technology to be usable. To address this limitation, this paper presents the temporal evolution of Metaverse definitions and captures its evolving requirements. Consequently, we provide insights into Metaverse requirements. In addition to enabling technologies, we lay out architectural elements for scalable, reliable, and efficient Metaverse systems, and a classification of existing Metaverse applications along with proposing required future research directions.

Text-based Person Search (TBPS) aims to retrieve the person images using natural language descriptions. Recently, Contrastive Language Image Pretraining (CLIP), a universal large cross-modal vision-language pre-training model, has remarkably performed over various cross-modal downstream tasks due to its powerful cross-modal semantic learning capacity. TPBS, as a fine-grained cross-modal retrieval task, is also facing the rise of research on the CLIP-based TBPS. In order to explore the potential of the visual-language pre-training model for downstream TBPS tasks, this paper makes the first attempt to conduct a comprehensive empirical study of CLIP for TBPS and thus contribute a straightforward, incremental, yet strong TBPS-CLIP baseline to the TBPS community. We revisit critical design considerations under CLIP, including data augmentation and loss function. The model, with the aforementioned designs and practical training tricks, can attain satisfactory performance without any sophisticated modules. Also, we conduct the probing experiments of TBPS-CLIP in model generalization and model compression, demonstrating the effectiveness of TBPS-CLIP from various aspects. This work is expected to provide empirical insights and highlight future CLIP-based TBPS research.

With the rapid evolution of the Internet of Things, many real-world applications utilize heterogeneously connected sensors to capture time-series information. Edge-based machine learning (ML) methodologies are often employed to analyze locally collected data. However, a fundamental issue across data-driven ML approaches is distribution shift. It occurs when a model is deployed on a data distribution different from what it was trained on, and can substantially degrade model performance. Additionally, increasingly sophisticated deep neural networks (DNNs) have been proposed to capture spatial and temporal dependencies in multi-sensor time series data, requiring intensive computational resources beyond the capacity of today's edge devices. While brain-inspired hyperdimensional computing (HDC) has been introduced as a lightweight solution for edge-based learning, existing HDCs are also vulnerable to the distribution shift challenge. In this paper, we propose DOMINO, a novel HDC learning framework addressing the distribution shift problem in noisy multi-sensor time-series data. DOMINO leverages efficient and parallel matrix operations on high-dimensional space to dynamically identify and filter out domain-variant dimensions. Our evaluation on a wide range of multi-sensor time series classification tasks shows that DOMINO achieves on average 2.04% higher accuracy than state-of-the-art (SOTA) DNN-based domain generalization techniques, and delivers 16.34x faster training and 2.89x faster inference. More importantly, DOMINO performs notably better when learning from partially labeled and highly imbalanced data, providing 10.93x higher robustness against hardware noises than SOTA DNNs.

Over the past few decades, ubiquitous sensors and systems have been an integral part of humans' everyday life. They augment human capabilities and provide personalized experiences across diverse contexts such as healthcare, education, and transportation. However, the widespread adoption of ubiquitous computing has also brought forth concerns regarding fairness and equitable treatment. As these systems can make automated decisions that impact individuals, it is essential to ensure that they do not perpetuate biases or discriminate against specific groups. While fairness in ubiquitous computing has been an acknowledged concern since the 1990s, it remains understudied within the field. To bridge this gap, we propose a framework that incorporates fairness considerations into system design, including prioritizing stakeholder perspectives, inclusive data collection, fairness-aware algorithms, appropriate evaluation criteria, enhancing human engagement while addressing privacy concerns, and interactive improvement and regular monitoring. Our framework aims to guide the development of fair and unbiased ubiquitous computing systems, ensuring equal treatment and positive societal impact.

This report contains the proceedings of the 19th International Workshop on Termination (WST 2023), which was held in Obergurgl during August 24--25 as part of Obergurgl Summer on Rewriting (OSR 2023).

Data in Knowledge Graphs often represents part of the current state of the real world. Thus, to stay up-to-date the graph data needs to be updated frequently. To utilize information from Knowledge Graphs, many state-of-the-art machine learning approaches use embedding techniques. These techniques typically compute an embedding, i.e., vector representations of the nodes as input for the main machine learning algorithm. If a graph update occurs later on -- specifically when nodes are added or removed -- the training has to be done all over again. This is undesirable, because of the time it takes and also because downstream models which were trained with these embeddings have to be retrained if they change significantly. In this paper, we investigate embedding updates that do not require full retraining and evaluate them in combination with various embedding models on real dynamic Knowledge Graphs covering multiple use cases. We study approaches that place newly appearing nodes optimally according to local information, but notice that this does not work well. However, we find that if we continue the training of the old embedding, interleaved with epochs during which we only optimize for the added and removed parts, we obtain good results in terms of typical metrics used in link prediction. This performance is obtained much faster than with a complete retraining and hence makes it possible to maintain embeddings for dynamic Knowledge Graphs.

Object detectors usually achieve promising results with the supervision of complete instance annotations. However, their performance is far from satisfactory with sparse instance annotations. Most existing methods for sparsely annotated object detection either re-weight the loss of hard negative samples or convert the unlabeled instances into ignored regions to reduce the interference of false negatives. We argue that these strategies are insufficient since they can at most alleviate the negative effect caused by missing annotations. In this paper, we propose a simple but effective mechanism, called Co-mining, for sparsely annotated object detection. In our Co-mining, two branches of a Siamese network predict the pseudo-label sets for each other. To enhance multi-view learning and better mine unlabeled instances, the original image and corresponding augmented image are used as the inputs of two branches of the Siamese network, respectively. Co-mining can serve as a general training mechanism applied to most of modern object detectors. Experiments are performed on MS COCO dataset with three different sparsely annotated settings using two typical frameworks: anchor-based detector RetinaNet and anchor-free detector FCOS. Experimental results show that our Co-mining with RetinaNet achieves 1.4%~2.1% improvements compared with different baselines and surpasses existing methods under the same sparsely annotated setting.

Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.

北京阿比特科技有限公司