亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Coarse-grained (CG) molecular dynamics enables the study of biological processes at temporal and spatial scales that would be intractable at an atomistic resolution. However, accurately learning a CG force field remains a challenge. In this work, we leverage connections between score-based generative models, force fields and molecular dynamics to learn a CG force field without requiring any force inputs during training. Specifically, we train a diffusion generative model on protein structures from molecular dynamics simulations, and we show that its score function approximates a force field that can directly be used to simulate CG molecular dynamics. While having a vastly simplified training setup compared to previous work, we demonstrate that our approach leads to improved performance across several small- to medium-sized protein simulations, reproducing the CG equilibrium distribution, and preserving dynamics of all-atom simulations such as protein folding events.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 泛函 · 分解 · · 論文 ·
2023 年 11 月 2 日

Vertical decomposition is a widely used general technique for decomposing the cells of arrangements of semi-algebraic sets in $d$-space into constant-complexity subcells. In this paper, we settle in the affirmative a few long-standing open problems involving the vertical decomposition of substructures of arrangements for $d=3,4$: (i) Let $\mathcal{S}$ be a collection of $n$ semi-algebraic sets of constant complexity in 3D, and let $U(m)$ be an upper bound on the complexity of the union $\mathcal{U}(\mathcal{S}')$ of any subset $\mathcal{S}'\subseteq \mathcal{S}$ of size at most $m$. We prove that the complexity of the vertical decomposition of the complement of $\mathcal{U}(\mathcal{S})$ is $O^*(n^2+U(n))$ (where the $O^*(\cdot)$ notation hides subpolynomial factors). We also show that the complexity of the vertical decomposition of the entire arrangement $\mathcal{A}(\mathcal{S})$ is $O^*(n^2+X)$, where $X$ is the number of vertices in $\mathcal{A}(\mathcal{S})$. (ii) Let $\mathcal{F}$ be a collection of $n$ trivariate functions whose graphs are semi-algebraic sets of constant complexity. We show that the complexity of the vertical decomposition of the portion of the arrangement $\mathcal{A}(\mathcal{F})$ in 4D lying below the lower envelope of $\mathcal{F}$ is $O^*(n^3)$. These results lead to efficient algorithms for a variety of problems involving these decompositions, including algorithms for constructing the decompositions themselves, and for constructing $(1/r)$-cuttings of substructures of arrangements of the kinds considered above. One additional algorithm of interest is for output-sensitive point enclosure queries amid semi-algebraic sets in three or four dimensions. In addition, as a main domain of applications, we study various proximity problems involving points and lines in 3D.

The Fisher-Kolmogorov equation is a diffusion-reaction PDE that is used to model the accumulation of prionic proteins, which are responsible for many different neurological disorders. Likely, the most important and studied misfolded protein in literature is the Amyloid-$\beta$, responsible for the onset of Alzheimer disease. Starting from medical images we construct a reduced-order model based on a graph brain connectome. The reaction coefficient of the proteins is modelled as a stochastic random field, taking into account all the many different underlying physical processes, which can hardly be measured. Its probability distribution is inferred by means of the Monte Carlo Markov Chain method applied to clinical data. The resulting model is patient-specific and can be employed for predicting the disease's future development. Forward uncertainty quantification techniques (Monte Carlo and sparse grid stochastic collocation) are applied with the aim of quantifying the impact of the variability of the reaction coefficient on the progression of protein accumulation within the next 20 years.

Numerous evaluation metrics have been developed for natural language generation tasks, but their effectiveness in evaluating stories is limited as they are not specifically tailored to assess intricate aspects of storytelling, such as fluency and interestingness. In this paper, we introduce DELTASCORE, a novel methodology that employs perturbation techniques for the evaluation of nuanced story aspects. Our central proposition posits that the extent to which a story excels in a specific aspect (e.g., fluency) correlates with the magnitude of its susceptibility to particular perturbations (e.g., the introduction of typos). Given this, we measure the quality of an aspect by calculating the likelihood difference between pre- and post-perturbation states using pre-trained language models. We compare DELTASCORE with existing metrics on storytelling datasets from two domains in five fine-grained story aspects: fluency, coherence, relatedness, logicality, and interestingness. DELTASCORE demonstrates remarkable performance, revealing a surprising finding that a specific perturbation proves highly effective in capturing multiple aspects.

Retrieval with extremely long queries and documents is a well-known and challenging task in information retrieval and is commonly known as Query-by-Document (QBD) retrieval. Specifically designed Transformer models that can handle long input sequences have not shown high effectiveness in QBD tasks in previous work. We propose a Re-Ranker based on the novel Proportional Relevance Score (RPRS) to compute the relevance score between a query and the top-k candidate documents. Our extensive evaluation shows RPRS obtains significantly better results than the state-of-the-art models on five different datasets. Furthermore, RPRS is highly efficient since all documents can be pre-processed, embedded, and indexed before query time which gives our re-ranker the advantage of having a complexity of O(N) where N is the total number of sentences in the query and candidate documents. Furthermore, our method solves the problem of the low-resource training in QBD retrieval tasks as it does not need large amounts of training data, and has only three parameters with a limited range that can be optimized with a grid search even if a small amount of labeled data is available. Our detailed analysis shows that RPRS benefits from covering the full length of candidate documents and queries.

The problem of answering questions using knowledge from pre-trained language models (LMs) and knowledge graphs (KGs) presents two challenges: given a QA context (question and answer choice), methods need to (i) identify relevant knowledge from large KGs, and (ii) perform joint reasoning over the QA context and KG. In this work, we propose a new model, QA-GNN, which addresses the above challenges through two key innovations: (i) relevance scoring, where we use LMs to estimate the importance of KG nodes relative to the given QA context, and (ii) joint reasoning, where we connect the QA context and KG to form a joint graph, and mutually update their representations through graph neural networks. We evaluate QA-GNN on the CommonsenseQA and OpenBookQA datasets, and show its improvement over existing LM and LM+KG models, as well as its capability to perform interpretable and structured reasoning, e.g., correctly handling negation in questions.

With the advances of data-driven machine learning research, a wide variety of prediction problems have been tackled. It has become critical to explore how machine learning and specifically deep learning methods can be exploited to analyse healthcare data. A major limitation of existing methods has been the focus on grid-like data; however, the structure of physiological recordings are often irregular and unordered which makes it difficult to conceptualise them as a matrix. As such, graph neural networks have attracted significant attention by exploiting implicit information that resides in a biological system, with interactive nodes connected by edges whose weights can be either temporal associations or anatomical junctions. In this survey, we thoroughly review the different types of graph architectures and their applications in healthcare. We provide an overview of these methods in a systematic manner, organized by their domain of application including functional connectivity, anatomical structure and electrical-based analysis. We also outline the limitations of existing techniques and discuss potential directions for future research.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.

We propose a novel attention gate (AG) model for medical imaging that automatically learns to focus on target structures of varying shapes and sizes. Models trained with AGs implicitly learn to suppress irrelevant regions in an input image while highlighting salient features useful for a specific task. This enables us to eliminate the necessity of using explicit external tissue/organ localisation modules of cascaded convolutional neural networks (CNNs). AGs can be easily integrated into standard CNN architectures such as the U-Net model with minimal computational overhead while increasing the model sensitivity and prediction accuracy. The proposed Attention U-Net architecture is evaluated on two large CT abdominal datasets for multi-class image segmentation. Experimental results show that AGs consistently improve the prediction performance of U-Net across different datasets and training sizes while preserving computational efficiency. The code for the proposed architecture is publicly available.

Many natural language processing tasks solely rely on sparse dependencies between a few tokens in a sentence. Soft attention mechanisms show promising performance in modeling local/global dependencies by soft probabilities between every two tokens, but they are not effective and efficient when applied to long sentences. By contrast, hard attention mechanisms directly select a subset of tokens but are difficult and inefficient to train due to their combinatorial nature. In this paper, we integrate both soft and hard attention into one context fusion model, "reinforced self-attention (ReSA)", for the mutual benefit of each other. In ReSA, a hard attention trims a sequence for a soft self-attention to process, while the soft attention feeds reward signals back to facilitate the training of the hard one. For this purpose, we develop a novel hard attention called "reinforced sequence sampling (RSS)", selecting tokens in parallel and trained via policy gradient. Using two RSS modules, ReSA efficiently extracts the sparse dependencies between each pair of selected tokens. We finally propose an RNN/CNN-free sentence-encoding model, "reinforced self-attention network (ReSAN)", solely based on ReSA. It achieves state-of-the-art performance on both Stanford Natural Language Inference (SNLI) and Sentences Involving Compositional Knowledge (SICK) datasets.

北京阿比特科技有限公司