This article considers a semi-supervised classification setting on a Gaussian mixture model, where the data is not labeled strictly as usual, but instead with uncertain labels. Our main aim is to compute the Bayes risk for this model. We compare the behavior of the Bayes risk and the best known algorithm for this model. This comparison eventually gives new insights over the algorithm.
The digital transformation leads to fundamental change in organizational structures. To be able to apply new technologies not only selectively, processes in companies must be revised and functional units must be viewed holistically, especially with regard to interfaces. Target-oriented management decisions are made, among other things, on the basis of risk management and compliance in combination with the internal control system as governance functions. The effectiveness and efficiency of these functions is decisive to follow guidelines and regulatory requirements as well as for the evaluation of alternative options for acting with regard to activities of companies. GRC (Governance, Risk and Compliance) means an integrated governance-approach, in which the mentioned governance functions are interlinked and not separated from each other. Methods of artificial intelligence represents an important technology of digital transformation. This technology, which offers a broad range of methods such as machine learning, artificial neural networks, natural language processing or deep learning, offers a lot of possible applications in many business areas from purchasing to production or customer service. Artificial intelligence is also being used in GRC, for example for processing and analysis of unstructured data sets. This study contains the results of a survey conducted in 2021 to identify and analyze the potential applications of artificial intelligence in GRC.
In the field of computer vision, self-supervised learning has emerged as a method to extract robust features from unlabeled data, where models derive labels autonomously from the data itself, without the need for manual annotation. This paper provides a comprehensive review of discriminative approaches of self-supervised learning within the domain of computer vision, examining their evolution and current status. Through an exploration of various methods including contrastive, self-distillation, knowledge distillation, feature decorrelation, and clustering techniques, we investigate how these approaches leverage the abundance of unlabeled data. Finally, we have comparison of self-supervised learning methods on the standard ImageNet classification benchmark.
Image decomposition plays a crucial role in various computer vision tasks, enabling the analysis and manipulation of visual content at a fundamental level. Overlapping images, which occur when multiple objects or scenes partially occlude each other, pose unique challenges for decomposition algorithms. The task intensifies when working with sparse images, where the scarcity of meaningful information complicates the precise extraction of components. This paper presents a solution that leverages the power of deep learning to accurately extract individual objects within multi-dimensional overlapping-sparse images, with a direct application in high-energy physics with decomposition of overlaid elementary particles obtained from imaging detectors. In particular, the proposed approach tackles a highly complex yet unsolved problem: identifying and measuring independent particles at the vertex of neutrino interactions, where one expects to observe detector images with multiple indiscernible overlapping charged particles. By decomposing the image of the detector activity at the vertex through deep learning, it is possible to infer the kinematic parameters of the identified low-momentum particles - which otherwise would remain neglected - and enhance the reconstructed energy resolution of the neutrino event. We also present an additional step - that can be tuned directly on detector data - combining the above method with a fully-differentiable generative model to improve the image decomposition further and, consequently, the resolution of the measured parameters, achieving unprecedented results. This improvement is crucial for precisely measuring the parameters that govern neutrino flavour oscillations and searching for asymmetries between matter and antimatter.
Satellite imagery has played an increasingly important role in post-disaster building damage assessment. Unfortunately, current methods still rely on manual visual interpretation, which is often time-consuming and can cause very low accuracy. To address the limitations of manual interpretation, there has been a significant increase in efforts to automate the process. We present a solution that performs the two most important tasks in building damage assessment, segmentation and classification, through deep-learning models. We show our results submitted as part of the xView2 Challenge, a competition to design better models for identifying buildings and their damage level after exposure to multiple kinds of natural disasters. Our best model couples a building identification semantic segmentation convolutional neural network (CNN) to a building damage classification CNN, with a combined F1 score of 0.66, surpassing the xView2 challenge baseline F1 score of 0.28. We find that though our model was able to identify buildings with relatively high accuracy, building damage classification across various disaster types is a difficult task due to the visual similarity between different damage levels and different damage distribution between disaster types, highlighting the fact that it may be important to have a probabilistic prior estimate regarding disaster damage in order to obtain accurate predictions.
The rapid advancement in artificial intelligence (AI), particularly through deep neural networks, has catalyzed significant progress in fields such as vision and text processing. Nonetheless, the pursuit of AI systems that exhibit human-like reasoning and interpretability continues to pose a substantial challenge. The Neural-Symbolic paradigm, which integrates the deep learning prowess of neural networks with the reasoning capabilities of symbolic systems, presents a promising pathway toward developing more transparent and comprehensible AI systems. Within this paradigm, the Knowledge Graph (KG) emerges as a crucial element, offering a structured and dynamic method for representing knowledge through interconnected entities and relationships, predominantly utilizing the triple (subject, predicate, object). This paper explores recent advancements in neural-symbolic integration based on KG, elucidating how KG underpins this integration across three key categories: enhancing the reasoning and interpretability of neural networks through the incorporation of symbolic knowledge (Symbol for Neural), refining the completeness and accuracy of symbolic systems via neural network methodologies (Neural for Symbol), and facilitating their combined application in Hybrid Neural-Symbolic Integration. It highlights current trends and proposes directions for future research in the domain of Neural-Symbolic AI.
Successfully addressing a wide variety of tasks is a core ability of autonomous agents, requiring flexibly adapting the underlying decision-making strategies and, as we argue in this work, also adapting the perception modules. An analogical argument would be the human visual system, which uses top-down signals to focus attention determined by the current task. Similarly, we adapt pre-trained large vision models conditioned on specific downstream tasks in the context of multi-task policy learning. We introduce task-conditioned adapters that do not require finetuning any pre-trained weights, combined with a single policy trained with behavior cloning and capable of addressing multiple tasks. We condition the visual adapters on task embeddings, which can be selected at inference if the task is known, or alternatively inferred from a set of example demonstrations. To this end, we propose a new optimization-based estimator. We evaluate the method on a wide variety of tasks from the CortexBench benchmark and show that, compared to existing work, it can be addressed with a single policy. In particular, we demonstrate that adapting visual features is a key design choice and that the method generalizes to unseen tasks given a few demonstrations.
The evaluation of text-generative vision-language models is a challenging yet crucial endeavor. By addressing the limitations of existing Visual Question Answering (VQA) benchmarks and proposing innovative evaluation methodologies, our research seeks to advance our understanding of these models' capabilities. We propose a novel VQA benchmark based on well-known visual classification datasets which allows a granular evaluation of text-generative vision-language models and their comparison with discriminative vision-language models. To improve the assessment of coarse answers on fine-grained classification tasks, we suggest using the semantic hierarchy of the label space to ask automatically generated follow-up questions about the ground-truth category. Finally, we compare traditional NLP and LLM-based metrics for the problem of evaluating model predictions given ground-truth answers. We perform a human evaluation study upon which we base our decision on the final metric. We apply our benchmark to a suite of vision-language models and show a detailed comparison of their abilities on object, action, and attribute classification. Our contributions aim to lay the foundation for more precise and meaningful assessments, facilitating targeted progress in the exciting field of vision-language modeling.
When multitudes of features can plausibly be associated with a response, both privacy considerations and model parsimony suggest grouping them to increase the predictive power of a regression model. Specifically, the identification of groups of predictors significantly associated with the response variable eases further downstream analysis and decision-making. This paper proposes a new data analysis methodology that utilizes the high-dimensional predictor space to construct an implicit network with weighted edges %and weights on the edges to identify significant associations between the response and the predictors. Using a population model for groups of predictors defined via network-wide metrics, a new supervised grouping algorithm is proposed to determine the correct group, with probability tending to one as the sample size diverges to infinity. For this reason, we establish several theoretical properties of the estimates of network-wide metrics. A novel model-assisted bootstrap procedure that substantially decreases computational complexity is developed, facilitating the assessment of uncertainty in the estimates of network-wide metrics. The proposed methods account for several challenges that arise in the high-dimensional data setting, including (i) a large number of predictors, (ii) uncertainty regarding the true statistical model, and (iii) model selection variability. The performance of the proposed methods is demonstrated through numerical experiments, data from sports analytics, and breast cancer data.
In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.
Deep learning constitutes a recent, modern technique for image processing and data analysis, with promising results and large potential. As deep learning has been successfully applied in various domains, it has recently entered also the domain of agriculture. In this paper, we perform a survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges. We examine the particular agricultural problems under study, the specific models and frameworks employed, the sources, nature and pre-processing of data used, and the overall performance achieved according to the metrics used at each work under study. Moreover, we study comparisons of deep learning with other existing popular techniques, in respect to differences in classification or regression performance. Our findings indicate that deep learning provides high accuracy, outperforming existing commonly used image processing techniques.