亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Face inpainting requires the model to have a precise global understanding of the facial position structure. Benefiting from the powerful capabilities of deep learning backbones, recent works in face inpainting have achieved decent performance in ideal setting (square shape with $512px$). However, existing methods often produce a visually unpleasant result, especially in the position-sensitive details (e.g., eyes and nose), when directly applied to arbitrary-shaped images in real-world scenarios. The visually unpleasant position-sensitive details indicate the shortcomings of existing methods in terms of position information processing capability. In this paper, we propose an \textbf{I}mplicit \textbf{N}eural \textbf{I}npainting \textbf{N}etwork (IN$^2$) to handle arbitrary-shape face images in real-world scenarios by explicit modeling for position information. Specifically, a downsample processing encoder is proposed to reduce information loss while obtaining the global semantic feature. A neighbor hybrid attention block is proposed with a hybrid attention mechanism to improve the facial understanding ability of the model without restricting the shape of the input. Finally, an implicit neural pyramid decoder is introduced to explicitly model position information and bridge the gap between low-resolution features and high-resolution output. Extensive experiments demonstrate the superiority of the proposed method in real-world face inpainting task.

相關內容

圖像修復(英語:Inpainting)指重建的圖像和視頻中丟失或損壞的部分的過程。例如在博物館中,這項工作常由經驗豐富的博物館管理員或者藝術品修復師來進行。數碼世界中,圖像修復又稱圖像插值或視頻插值,指利用復雜的算法來替換已丟失、損壞的圖像數據,主要替換一些小區域和瑕疵。

When deploying segmentation models in practice, it is critical to evaluate their behaviors in varied and complex scenes. Different from the previous evaluation paradigms only in consideration of global attribute variations (e.g. adverse weather), we investigate both local and global attribute variations for robustness evaluation. To achieve this, we construct a mask-preserved attribute editing pipeline to edit visual attributes of real images with precise control of structural information. Therefore, the original segmentation labels can be reused for the edited images. Using our pipeline, we construct a benchmark covering both object and image attributes (e.g. color, material, pattern, style). We evaluate a broad variety of semantic segmentation models, spanning from conventional close-set models to recent open-vocabulary large models on their robustness to different types of variations. We find that both local and global attribute variations affect segmentation performances, and the sensitivity of models diverges across different variation types. We argue that local attributes have the same importance as global attributes, and should be considered in the robustness evaluation of segmentation models. Code: //github.com/PRIS-CV/Pascal-EA.

Cooperative co-evolution (CC) algorithms, based on the divide-and-conquer strategy, have emerged as the predominant approach to solving large-scale global optimization (LSGO) problems. The efficiency and accuracy of the grouping stage significantly impact the performance of the optimization process. While the general separability grouping (GSG) method has overcome the limitation of previous differential grouping (DG) methods by enabling the decomposition of non-additively separable functions, it suffers from high computational complexity. To address this challenge, this article proposes a composite separability grouping (CSG) method, seamlessly integrating DG and GSG into a problem decomposition framework to utilize the strengths of both approaches. CSG introduces a step-by-step decomposition framework that accurately decomposes various problem types using fewer computational resources. By sequentially identifying additively, multiplicatively and generally separable variables, CSG progressively groups non-separable variables by recursively considering the interactions between each non-separable variable and the formed non-separable groups. Furthermore, to enhance the efficiency and accuracy of CSG, we introduce two innovative methods: a multiplicatively separable variable detection method and a non-separable variable grouping method. These two methods are designed to effectively detect multiplicatively separable variables and efficiently group non-separable variables, respectively. Extensive experimental results demonstrate that CSG achieves more accurate variable grouping with lower computational complexity compared to GSG and state-of-the-art DG series designs.

Deep neural networks (DNNs) lack the precise semantics and definitive probabilistic interpretation of probabilistic graphical models (PGMs). In this paper, we propose an innovative solution by constructing infinite tree-structured PGMs that correspond exactly to neural networks. Our research reveals that DNNs, during forward propagation, indeed perform approximations of PGM inference that are precise in this alternative PGM structure. Not only does our research complement existing studies that describe neural networks as kernel machines or infinite-sized Gaussian processes, it also elucidates a more direct approximation that DNNs make to exact inference in PGMs. Potential benefits include improved pedagogy and interpretation of DNNs, and algorithms that can merge the strengths of PGMs and DNNs.

The conditional mutual information quantifies the conditional dependence of two random variables. It has numerous applications; it forms, for example, part of the definition of transfer entropy, a common measure of the causal relationship between time series. It does, however, require a lot of data to estimate accurately and suffers the curse of dimensionality, limiting its application in machine learning and data science. However, the Kozachenko-Leonenko approach can address this problem: it is possible, in this approach to define a nearest-neighbour estimator which depends only on the distance between data points and not on the dimension of the data. Furthermore, the bias can be calculated analytically for this estimator. Here this estimator is described and is tested on simulated data.

Autonomous aerial harvesting is a highly complex problem because it requires numerous interdisciplinary algorithms to be executed on mini low-powered computing devices. Object detection is one such algorithm that is compute-hungry. In this context, we make the following contributions: (i) Fast Fruit Detector (FFD), a resource-efficient, single-stage, and postprocessing-free object detector based on our novel latent object representation (LOR) module, query assignment, and prediction strategy. FFD achieves 100FPS@FP32 precision on the latest 10W NVIDIA Jetson-NX embedded device while co-existing with other time-critical sub-systems such as control, grasping, SLAM, a major achievement of this work. (ii) a method to generate vast amounts of training data without exhaustive manual labelling of fruit images since they consist of a large number of instances, which increases the labelling cost and time. (iii) an open-source fruit detection dataset having plenty of very small-sized instances that are difficult to detect. Our exhaustive evaluations on our and MinneApple dataset show that FFD, being only a single-scale detector, is more accurate than many representative detectors, e.g. FFD is better than single-scale Faster-RCNN by 10.7AP, multi-scale Faster-RCNN by 2.3AP, and better than latest single-scale YOLO-v8 by 8AP and multi-scale YOLO-v8 by 0.3 while being considerably faster.

Due to its high sample complexity, simulation is, as of today, critical for the successful application of reinforcement learning. Many real-world problems, however, exhibit overly complex dynamics, which makes their full-scale simulation computationally slow. In this paper, we show how to decompose large networked systems of many agents into multiple local components such that we can build separate simulators that run independently and in parallel. To monitor the influence that the different local components exert on one another, each of these simulators is equipped with a learned model that is periodically trained on real trajectories. Our empirical results reveal that distributing the simulation among different processes not only makes it possible to train large multi-agent systems in just a few hours but also helps mitigate the negative effects of simultaneous learning.

Operating units often experience various failure modes in complex systems, leading to distinct degradation paths. Relying on a prognostic model trained on a single failure mode may lead to poor generalization performance across multiple failure modes. Therefore, accurately identifying the failure mode is of critical importance. Current prognostic approaches either ignore failure modes during degradation or assume known failure mode labels, which can be challenging to acquire in practice. Moreover, the high dimensionality and complex relations of sensor signals make it challenging to identify the failure modes accurately. To address these issues, we propose a novel failure mode diagnosis method that leverages a dimension reduction technique called UMAP (Uniform Manifold Approximation and Projection) to project and visualize each unit's degradation trajectory into a lower dimension. Then, using these degradation trajectories, we develop a time series-based clustering method to identify the training units' failure modes. Finally, we introduce a monotonically constrained prognostic model to predict the failure mode labels and RUL of the test units simultaneously using the obtained failure modes of the training units. The proposed prognostic model provides failure mode-specific RUL predictions while preserving the monotonic property of the RUL predictions across consecutive time steps. We evaluate the proposed model using a case study with the aircraft gas turbine engine dataset.

Entity abstract summarization aims to generate a coherent description of a given entity based on a set of relevant Internet documents. Pretrained language models (PLMs) have achieved significant success in this task, but they may suffer from hallucinations, i.e. generating non-factual information about the entity. To address this issue, we decompose the summary into two components: Facts that represent the factual information about the given entity, which PLMs are prone to fabricate; and Template that comprises generic content with designated slots for facts, which PLMs can generate competently. Based on the facts-template decomposition, we propose SlotSum, an explainable framework for entity abstract summarization. SlotSum first creates the template and then predicts the fact for each template slot based on the input documents. Benefiting from our facts-template decomposition, SlotSum can easily locate errors and further rectify hallucinated predictions with external knowledge. We construct a new dataset WikiFactSum to evaluate the performance of SlotSum. Experimental results demonstrate that SlotSum could generate summaries that are significantly more factual with credible external knowledge.

We consider the problem of referring image segmentation. Given an input image and a natural language expression, the goal is to segment the object referred by the language expression in the image. Existing works in this area treat the language expression and the input image separately in their representations. They do not sufficiently capture long-range correlations between these two modalities. In this paper, we propose a cross-modal self-attention (CMSA) module that effectively captures the long-range dependencies between linguistic and visual features. Our model can adaptively focus on informative words in the referring expression and important regions in the input image. In addition, we propose a gated multi-level fusion module to selectively integrate self-attentive cross-modal features corresponding to different levels in the image. This module controls the information flow of features at different levels. We validate the proposed approach on four evaluation datasets. Our proposed approach consistently outperforms existing state-of-the-art methods.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司