亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce One-Shot Label-Only (OSLO) membership inference attacks (MIAs), which accurately infer a given sample's membership in a target model's training set with high precision using just \emph{a single query}, where the target model only returns the predicted hard label. This is in contrast to state-of-the-art label-only attacks which require $\sim6000$ queries, yet get attack precisions lower than OSLO's. OSLO leverages transfer-based black-box adversarial attacks. The core idea is that a member sample exhibits more resistance to adversarial perturbations than a non-member. We compare OSLO against state-of-the-art label-only attacks and demonstrate that, despite requiring only one query, our method significantly outperforms previous attacks in terms of precision and true positive rate (TPR) under the same false positive rates (FPR). For example, compared to previous label-only MIAs, OSLO achieves a TPR that is at least 7$\times$ higher under a 1\% FPR and at least 22$\times$ higher under a 0.1\% FPR on CIFAR100 for a ResNet18 model. We evaluated multiple defense mechanisms against OSLO.

相關內容

Large Language Models (LLMs) are increasingly employed in complex workflows, where different LLMs and fine-tuned variants collaboratively address complex tasks. However, these systems face significant inefficiencies due to redundant context processing of the shared context. We propose DroidSpeak, a framework that optimizes context sharing between fine-tuned LLMs derived from the same foundational model. DroidSpeak identifies critical layers in the KV cache and selectively recomputes them, enabling effective reuse of intermediate data while maintaining high accuracy. Our approach balances computational efficiency and task fidelity, significantly reducing inference latency and throughput bottlenecks. Experiments on diverse datasets and model pairs demonstrate that DroidSpeak achieves up to 3x higher throughputs and 2.6x faster prefill times with negligible accuracy loss compared to full recomputation.

Neuro-symbolic Artificial Intelligence (AI) models, blending neural networks with symbolic AI, have facilitated transparent reasoning and context understanding without the need for explicit rule-based programming. However, implementing such models in the Internet of Things (IoT) sensor nodes presents hurdles due to computational constraints and intricacies. In this work, for the first time, we propose a near-sensor neuro-symbolic AI computing accelerator named Neuro-Photonix for vision applications. Neuro-photonix processes neural dynamic computations on analog data while inherently supporting granularity-controllable convolution operations through the efficient use of photonic devices. Additionally, the creation of an innovative, low-cost ADC that works seamlessly with photonic technology removes the necessity for costly ADCs. Moreover, Neuro-Photonix facilitates the generation of HyperDimensional (HD) vectors for HD-based symbolic AI computing. This approach allows the proposed design to substantially diminish the energy consumption and latency of conversion, transmission, and processing within the established cloud-centric architecture and recently designed accelerators. Our device-to-architecture results show that Neuro-Photonix achieves 30 GOPS/W and reduces power consumption by a factor of 20.8 and 4.1 on average on neural dynamics compared to ASIC baselines and photonic accelerators while preserving accuracy.

Classifier-free guidance (CFG) is widely used in diffusion models but often introduces over-contrast and over-saturation artifacts at higher guidance strengths. We present EP-CFG (Energy-Preserving Classifier-Free Guidance), which addresses these issues by preserving the energy distribution of the conditional prediction during the guidance process. Our method simply rescales the energy of the guided output to match that of the conditional prediction at each denoising step, with an optional robust variant for improved artifact suppression. Through experiments, we show that EP-CFG maintains natural image quality and preserves details across guidance strengths while retaining CFG's semantic alignment benefits, all with minimal computational overhead.

We introduce the Byte Latent Transformer (BLT), a new byte-level LLM architecture that, for the first time, matches tokenization-based LLM performance at scale with significant improvements in inference efficiency and robustness. BLT encodes bytes into dynamically sized patches, which serve as the primary units of computation. Patches are segmented based on the entropy of the next byte, allocating more compute and model capacity where increased data complexity demands it. We present the first FLOP controlled scaling study of byte-level models up to 8B parameters and 4T training bytes. Our results demonstrate the feasibility of scaling models trained on raw bytes without a fixed vocabulary. Both training and inference efficiency improve due to dynamically selecting long patches when data is predictable, along with qualitative improvements on reasoning and long tail generalization. Overall, for fixed inference costs, BLT shows significantly better scaling than tokenization-based models, by simultaneously growing both patch and model size.

Pursuing human-like interaction for Graphical User Interface (GUI) agents requires understanding the GUI context and following user instructions. However, existing works typically couple these two aspects and focus more on instruct-following abilities, while ignoring the importance of understanding the GUI context. In this paper, we introduce an instruction-free GUI navigation dataset, termed Insight-UI Dataset, to enhance model comprehension of GUI environments. Insight-UI Dataset is automatically generated from the Common Crawl corpus, simulating various platforms -- including iOS, Android, Windows, and Linux -- across multiple resolutions on 312K domains. Although GUI interactions vary by context, diverse interfaces share common internal patterns, such as clicking an item to view its details. It implies the feasibility of independent GUI operation learning, followed by joint optimization with instruction tuning. Thereby, we develop the GUI agent model Falcon-UI, which is initially pretrained on Insight-UI Dataset and subsequently fine-tuned on Android and Web GUI datasets, including AITW, AITZ, Android Control, and Mind2Web. With 7 billion parameters, Falcon-UI achieves accuracy comparable to the 72 billion-parameter Qwen2VL on AITZ, validating the alignment between GUI context comprehension and agent performance. Our code and dataset will be open-sourced.

Recent work has empirically shown that Vision-Language Models (VLMs) struggle to fully understand the compositional properties of the human language, usually modeling an image caption as a "bag of words". As a result, they perform poorly on compositional tasks, which require a deeper understanding of the different entities of a sentence (subject, verb, etc.) jointly with their mutual relationships in order to be solved. In this paper, we model the dependency relations among textual and visual tokens using a Causal Graphical Model (CGM), built using a dependency parser, and we train a decoder conditioned by the VLM visual encoder. Differently from standard autoregressive or parallel predictions, our decoder's generative process is partially-ordered following the CGM structure. This structure encourages the decoder to learn only the main causal dependencies in a sentence discarding spurious correlations. Using extensive experiments on five compositional benchmarks, we show that our method significantly outperforms all the state-of-the-art compositional approaches by a large margin, and it also improves over methods trained using much larger datasets.

Interpretability is a key challenge in fostering trust for Large Language Models (LLMs), which stems from the complexity of extracting reasoning from model's parameters. We present the Frame Representation Hypothesis, a theoretically robust framework grounded in the Linear Representation Hypothesis (LRH) to interpret and control LLMs by modeling multi-token words. Prior research explored LRH to connect LLM representations with linguistic concepts, but was limited to single token analysis. As most words are composed of several tokens, we extend LRH to multi-token words, thereby enabling usage on any textual data with thousands of concepts. To this end, we propose words can be interpreted as frames, ordered sequences of vectors that better capture token-word relationships. Then, concepts can be represented as the average of word frames sharing a common concept. We showcase these tools through Top-k Concept-Guided Decoding, which can intuitively steer text generation using concepts of choice. We verify said ideas on Llama 3.1, Gemma 2, and Phi 3 families, demonstrating gender and language biases, exposing harmful content, but also potential to remediate them, leading to safer and more transparent LLMs. Code is available at //github.com/phvv-me/frame-representation-hypothesis.git

Building on the success of large language models (LLMs), recent advancements such as GPT-4o have enabled real-time speech interactions through LLM-based voice assistants, offering a significantly improved user experience compared to traditional text-based interactions. However, the absence of benchmarks designed to evaluate these speech interaction capabilities has hindered progress of LLM-based voice assistants development. Current evaluations focus primarily on automatic speech recognition (ASR) or general knowledge evaluation with clean speeches, neglecting the more intricate, real-world scenarios that involve diverse speaker characteristics, environmental and content factors. To address this, we introduce VoiceBench, the first benchmark designed to provide a multi-faceted evaluation of LLM-based voice assistants. VoiceBench also includes both real and synthetic spoken instructions that incorporate the above three key real-world variations. Extensive experiments reveal the limitations of current LLM-based voice assistant models and offer valuable insights for future research and development in this field.

Diffusion-based Generative AI gains significant attention for its superior performance over other generative techniques like Generative Adversarial Networks and Variational Autoencoders. While it has achieved notable advancements in fields such as computer vision and natural language processing, their application in speech generation remains under-explored. Mainstream Text-to-Speech systems primarily map outputs to Mel-Spectrograms in the spectral space, leading to high computational loads due to the sparsity of MelSpecs. To address these limitations, we propose LatentSpeech, a novel TTS generation approach utilizing latent diffusion models. By using latent embeddings as the intermediate representation, LatentSpeech reduces the target dimension to 5% of what is required for MelSpecs, simplifying the processing for the TTS encoder and vocoder and enabling efficient high-quality speech generation. This study marks the first integration of latent diffusion models in TTS, enhancing the accuracy and naturalness of generated speech. Experimental results on benchmark datasets demonstrate that LatentSpeech achieves a 25% improvement in Word Error Rate and a 24% improvement in Mel Cepstral Distortion compared to existing models, with further improvements rising to 49.5% and 26%, respectively, with additional training data. These findings highlight the potential of LatentSpeech to advance the state-of-the-art in TTS technology

We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.

北京阿比特科技有限公司