亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the movable antenna (MA) array-enabled wireless communication with coordinate multi-point (CoMP) reception, where multiple destinations adopt the maximal ratio combination technique to jointly decode the common message sent from the transmitter equipped with the MA array. Our goal is to maximize the effective received signal-to-noise ratio, by jointly optimizing the transmit beamforming and the positions of the MA array. Although the formulated problem is highly non-convex, we reveal that it is fundamental to maximize the principal eigenvalue of a hermite channel matrix which is a function of the positions of the MA array. The corresponding sub-problem is still non-convex, for which we develop a computationally efficient algorithm. Afterwards, the optimal transmit beamforming is determined with a closed-form solution. In addition, the theoretical performance upper bound is analyzed. Since the MA array brings an additional spatial degree of freedom by flexibly adjusting all antennas' positions, it achieves significant performance gain compared to competitive benchmarks.

相關內容

While convolutional neural networks (CNNs) have achieved success in computer vision tasks, it is vulnerable to backdoor attacks. Such attacks could mislead the victim model to make attacker-chosen prediction with a specific trigger pattern. Until now, the trigger injection of existing attacks is mainly limited to spatial domain. Recent works take advantage of perceptual properties of planting specific patterns in the frequency domain, which only reflect indistinguishable pixel-wise perturbations in pixel domain. However, in the black-box setup, the inaccessibility of training process often renders more complex trigger designs. Existing frequency attacks simply handcraft the magnitude of spectrum, introducing anomaly frequency disparities between clean and poisoned data and taking risks of being removed by image processing operations (such as lossy compression and filtering). In this paper, we propose a robust low-frequency black-box backdoor attack (LFBA), which minimally perturbs low-frequency components of frequency spectrum and maintains the perceptual similarity in spatial space simultaneously. The key insight of our attack restrict the search for the optimal trigger to low-frequency region that can achieve high attack effectiveness, robustness against image transformation defenses and stealthiness in dual space. We utilize simulated annealing (SA), a form of evolutionary algorithm, to optimize the properties of frequency trigger including the number of manipulated frequency bands and the perturbation of each frequency component, without relying on the knowledge from the victim classifier. Extensive experiments on real-world datasets verify the effectiveness and robustness of LFBA against image processing operations and the state-of-the-art backdoor defenses, as well as its inherent stealthiness in both spatial and frequency space, making it resilient against frequency inspection.

In general, robotic dexterous hands are equipped with various sensors for acquiring multimodal contact information such as position, force, and pose of the grasped object. This multi-sensor-based design adds complexity to the robotic system. In contrast, vision-based tactile sensors employ specialized optical designs to enable the extraction of tactile information across different modalities within a single system. Nonetheless, the decoupling design for different modalities in common systems is often independent. Therefore, as the dimensionality of tactile modalities increases, it poses more complex challenges in data processing and decoupling, thereby limiting its application to some extent. Here, we developed a multimodal sensing system based on a vision-based tactile sensor, which utilizes visual representations of tactile information to perceive the multimodal contact information of the grasped object. The visual representations contain extensive content that can be decoupled by a deep neural network to obtain multimodal contact information such as classification, position, posture, and force of the grasped object. The results show that the tactile sensing system can perceive multimodal tactile information using only one single sensor and without different data decoupling designs for different modal tactile information, which reduces the complexity of the tactile system and demonstrates the potential for multimodal tactile integration in various fields such as biomedicine, biology, and robotics.

Multi-user massive MIMO is a promising candidate for future wireless communication systems. It enables users with different requirements to be connected to the same base station (BS) on the same set of resources. In uplink massive MU-MIMO, while users with different requirements are served, decoupled signal detection helps in using a user-specific detection scheme for every user. In this paper, we propose a low-complexity linear decoupling scheme called Sequential Decoupler (SD), which aids in the parallel detection of each user's data streams. The proposed algorithm shows significant complexity reduction, particularly when the number of users in the system increases. In the numerical simulations, it has been observed that the complexity of the proposed scheme is only 0.15% of the conventional Singular Value Decomposition (SVD) based decoupling and 47% to the pseudo-inverse based decoupling schemes when 80 users with two antennas each are served by the BS.

Thanks to technologies such as virtual network function the Fifth Generation (5G) of mobile networks dynamically allocate resources to different types of users in an on-demand fashion. Virtualization extends up to the 5G core, where software-defined networks and network slicing implement a customizable environment. These technologies can be controlled via application programming interfaces and web technologies, inheriting hence their security risks and settings. An attacker exploiting vulnerable implementations of the 5G core may gain privileged control of the network assets and disrupt its availability. However, there is currently no security assessment of the web security of the 5G core network. In this paper, we present the first security assessment of the 5G core from a web security perspective. We use the STRIDE threat modeling approach to define a complete list of possible threat vectors and associated attacks. Thanks to a suite of security testing tools, we cover all of these threats and test the security of the 5G core. In particular, we test the three most relevant open-source 5G core implementations, i.e., Open5GS, Free5Gc, and OpenAirInterface. Our analysis shows that all these cores are vulnerable to at least two of our identified attack vectors, demanding increased security measures in the development of future 5G core networks.

The computing in the network (COIN) paradigm is a promising solution that leverages unused network resources to perform tasks to meet computation-demanding applications, such as the metaverse. In this vein, we consider the partial computation offloading problem in the metaverse for multiple subtasks in a COIN environment to minimize energy consumption and delay while dynamically adjusting the offloading policy based on the changing computational resource status. The problem is NP-hard, and we transform it into two subproblems: the task-splitting problem (TSP) on the user side and the task-offloading problem (TOP) on the COIN side. We model the TSP as an ordinal potential game and propose a decentralized algorithm to obtain its Nash equilibrium (NE). Then, we model the TOP as a Markov decision process and propose the double deep Q-network (DDQN) to solve for the optimal offloading policy. Unlike the conventional DDQN algorithm, where intelligent agents sample offloading decisions randomly within a certain probability, the COIN agent explores the NE of the TSP and the deep neural network. Finally, the simulation results reveal that the proposed model approach allows the COIN agent to update its policies and make more informed decisions, leading to improved performance over time compared to the traditional baseline

A wireless communication system is studied that operates in the presence of multiple reconfigurable intelligent surfaces (RISs). In particular, a multi-operator environment is considered where each operator utilizes an RIS to enhance its communication quality. Although out-of-band interference does not exist (since each operator uses isolated spectrum resources), RISs controlled by different operators do affect the system performance of one another due to the inherently rapid phase shift adjustments that occur on an independent basis. The system performance of such a communication scenario is analytically studied for the practical case where discrete-only phase shifts occur at RIS. The proposed framework is quite general since it is valid under arbitrary channel fading conditions as well as the presence (or not) of the transceiver's direct link. Finally, the derived analytical results are verified via numerical and simulation trial as well as some novel and useful engineering outcomes are manifested.

Brain-inspired spiking neural networks (SNNs) have gained prominence in the field of neuromorphic computing owing to their low energy consumption during feedforward inference on neuromorphic hardware. However, it remains an open challenge how to effectively benefit from the sparse event-driven property of SNNs to minimize backpropagation learning costs. In this paper, we conduct a comprehensive examination of the existing event-driven learning algorithms, reveal their limitations, and propose novel solutions to overcome them. Specifically, we introduce two novel event-driven learning methods: the spike-timing-dependent event-driven (STD-ED) and membrane-potential-dependent event-driven (MPD-ED) algorithms. These proposed algorithms leverage precise neuronal spike timing and membrane potential, respectively, for effective learning. The two methods are extensively evaluated on static and neuromorphic datasets to confirm their superior performance. They outperform existing event-driven counterparts by up to 2.51% for STD-ED and 6.79% for MPD-ED on the CIFAR-100 dataset. In addition, we theoretically and experimentally validate the energy efficiency of our methods on neuromorphic hardware. On-chip learning experiments achieved a remarkable 30-fold reduction in energy consumption over time-step-based surrogate gradient methods. The demonstrated efficiency and efficacy of the proposed event-driven learning methods emphasize their potential to significantly advance the fields of neuromorphic computing, offering promising avenues for energy-efficiency applications.

Deep neural networks have been shown to provide accurate function approximations in high dimensions. However, fitting network parameters requires informative training data that are often challenging to collect in science and engineering applications. This work proposes Neural Galerkin schemes based on deep learning that generate training data with active learning for numerically solving high-dimensional partial differential equations. Neural Galerkin schemes build on the Dirac-Frenkel variational principle to train networks by minimizing the residual sequentially over time, which enables adaptively collecting new training data in a self-informed manner that is guided by the dynamics described by the partial differential equations. This is in contrast to other machine learning methods that aim to fit network parameters globally in time without taking into account training data acquisition. Our finding is that the active form of gathering training data of the proposed Neural Galerkin schemes is key for numerically realizing the expressive power of networks in high dimensions. Numerical experiments demonstrate that Neural Galerkin schemes have the potential to enable simulating phenomena and processes with many variables for which traditional and other deep-learning-based solvers fail, especially when features of the solutions evolve locally such as in high-dimensional wave propagation problems and interacting particle systems described by Fokker-Planck and kinetic equations.

Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.

Graph neural networks (GNNs) have emerged as a powerful paradigm for embedding-based entity alignment due to their capability of identifying isomorphic subgraphs. However, in real knowledge graphs (KGs), the counterpart entities usually have non-isomorphic neighborhood structures, which easily causes GNNs to yield different representations for them. To tackle this problem, we propose a new KG alignment network, namely AliNet, aiming at mitigating the non-isomorphism of neighborhood structures in an end-to-end manner. As the direct neighbors of counterpart entities are usually dissimilar due to the schema heterogeneity, AliNet introduces distant neighbors to expand the overlap between their neighborhood structures. It employs an attention mechanism to highlight helpful distant neighbors and reduce noises. Then, it controls the aggregation of both direct and distant neighborhood information using a gating mechanism. We further propose a relation loss to refine entity representations. We perform thorough experiments with detailed ablation studies and analyses on five entity alignment datasets, demonstrating the effectiveness of AliNet.

北京阿比特科技有限公司