亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

While LISA effectively bridges the gap between segmentation and large language models to enable reasoning segmentation, it poses certain limitations: unable to distinguish different instances of the target region, and constrained by the pre-defined textual response formats. In this work, we introduce LISA++, an update to the existing LISA model, focusing on improving core functionalities while keeping the base architecture intact. The main enhancements in LISA++ include: \textbf{1) Enhanced Segmentation}: The instance segmentation ability has been added, providing a more detailed scene analysis along with the existing multi-region semantic segmentation. \textbf{2) More Natural Conversation}: Improved capability for multi-turn dialogue, with the ability to incorporate segmentation results directly into text responses, i.e., Segmentation in Dialogue (SiD). These improvements are achieved by curating the existing samples of generic segmentation datasets, aimed specifically at enhancing the segmentation and conversational skills without structural change and additional data sources. Comparative analysis with the original LISA model shows significant advancements in these areas, positioning LISA++ as a notable upgrade in visual understanding and interaction. LISA++'s adaptability and improved features highlight the versatility of the mask-as-embedding paradigm proposed by LISA, and the potential as a foundational model for diverse applications.

相關內容

LISA:Large Installation System Administration Conference Explanation:大型安裝(zhuang)系統管(guan)理會(hui)議。 Publisher: USENIX。 SIT:

Bayesian networks model relationships between random variables under uncertainty and can be used to predict the likelihood of events and outcomes while incorporating observed evidence. From an eXplainable AI (XAI) perspective, such models are interesting as they tend to be compact. Moreover, captured relations can be directly inspected by domain experts. In practice, data is often real-valued. Unless assumptions of normality can be made, discretization is often required. The optimal discretization, however, depends on the relations modelled between the variables. This complicates learning Bayesian networks from data. For this reason, most literature focuses on learning conditional dependencies between sets of variables, called structure learning. In this work, we extend an existing state-of-the-art structure learning approach based on the Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) to jointly learn variable discretizations. The proposed Discretized Bayesian Network GOMEA (DBN-GOMEA) obtains similar or better results than the current state-of-the-art when tasked to retrieve randomly generated ground-truth networks. Moreover, leveraging a key strength of evolutionary algorithms, we can straightforwardly perform DBN learning multi-objectively. We show how this enables incorporating expert knowledge in a uniquely insightful fashion, finding multiple DBNs that trade-off complexity, accuracy, and the difference with a pre-determined expert network.

Generative Flow Networks (GFlowNets) are a new family of probabilistic samplers where an agent learns a stochastic policy for generating complex combinatorial structure through a series of decision-making steps. Despite being inspired from reinforcement learning, the current GFlowNet framework is relatively limited in its applicability and cannot handle stochasticity in the reward function. In this work, we adopt a distributional paradigm for GFlowNets, turning each flow function into a distribution, thus providing more informative learning signals during training. By parameterizing each edge flow through their quantile functions, our proposed \textit{quantile matching} GFlowNet learning algorithm is able to learn a risk-sensitive policy, an essential component for handling scenarios with risk uncertainty. Moreover, we find that the distributional approach can achieve substantial improvement on existing benchmarks compared to prior methods due to our enhanced training algorithm, even in settings with deterministic rewards.

Leader Election is an important primitive for programmable matter, since it is often an intermediate step for the solution of more complex problems. Although the leader election problem itself is well studied even in the specific context of programmable matter systems, research on fault tolerant approaches is more limited. We consider the problem in the previously studied Amoebot model on a triangular grid, when the configuration is connected but contains nodes the particles cannot move to (e.g., obstacles). We assume that particles agree on a common direction (i.e., the horizontal axis) but do not have chirality (i.e., they do not agree on the other two directions of the triangular grid). We begin by showing that an election algorithm with explicit termination is not possible in this case, but we provide an implicitly terminating algorithm that elects a unique leader without requiring any movement. These results are in contrast to those in the more common model with chirality but no agreement on directions, where explicit termination is always possible but the number of elected leaders depends on the symmetry of the initial configuration. Solving the problem under the assumption of one common direction allows for a unique leader to be elected in a stationary and deterministic way, which until now was only possible for simply connected configurations under a sequential scheduler.

Many successful methods to learn dynamical systems from data have recently been introduced. However, ensuring that the inferred dynamics preserve known constraints, such as conservation laws or restrictions on the allowed system states, remains challenging. We propose stabilized neural differential equations (SNDEs), a method to enforce arbitrary manifold constraints for neural differential equations. Our approach is based on a stabilization term that, when added to the original dynamics, renders the constraint manifold provably asymptotically stable. Due to its simplicity, our method is compatible with all common neural differential equation (NDE) models and broadly applicable. In extensive empirical evaluations, we demonstrate that SNDEs outperform existing methods while broadening the types of constraints that can be incorporated into NDE training.

In this paper we present a new gap-creating randomized self-reduction for parameterized Maximum Likelihood Decoding problem over $\mathbb{F}_p$ ($k$-MLD$_p$). The reduction takes a $k$-MLD$_p$ instance with $k\cdot n$ vectors as input, runs in time $f(k)n^{O(1)}$ for some computable function $f$, outputs a $(3/2-\varepsilon)$-Gap-$k'$-MLD$_p$ instance for any $\varepsilon>0$, where $k'=O(k^2\log k)$. Using this reduction, we show that assuming the randomized Exponential Time Hypothesis (ETH), no algorithms can approximate $k$-MLD$_p$ (and therefore its dual problem $k$-NCP$_p$) within factor $(3/2-\varepsilon)$ in $f(k)\cdot n^{o(\sqrt{k/\log k})}$ time for any $\varepsilon>0$. We then use reduction by Bhattacharyya, Ghoshal, Karthik and Manurangsi (ICALP 2018) to amplify the $(3/2-\varepsilon)$-gap to any constant. As a result, we show that assuming ETH, no algorithms can approximate $k$-NCP$_p$ and $k$-MDP$_p$ within $\gamma$-factor in $f(k)n^{o(k^{\varepsilon_\gamma})}$ time for some constant $\varepsilon_\gamma>0$. Combining with the gap-preserving reduction by Bennett, Cheraghchi, Guruswami and Ribeiro (STOC 2023), we also obtain similar lower bounds for $k$-MDP$_p$, $k$-CVP$_p$ and $k$-SVP$_p$. These results improve upon the previous $f(k)n^{\Omega(\mathsf{poly} \log k)}$ lower bounds for these problems under ETH using reductions by Bhattacharyya et al. (J.ACM 2021) and Bennett et al. (STOC 2023).

Deep learning techniques applied to program analysis tasks such as code classification, summarization, and bug detection have seen widespread interest. Traditional approaches, however, treat programming source code as natural language text, which may neglect significant structural or semantic details. Additionally, most current methods of representing source code focus solely on the code, without considering beneficial additional context. This paper explores the integration of static analysis and additional context such as bug reports and design patterns into source code representations for deep learning models. We use the Abstract Syntax Tree-based Neural Network (ASTNN) method and augment it with additional context information obtained from bug reports and design patterns, creating an enriched source code representation that significantly enhances the performance of common software engineering tasks such as code classification and code clone detection. Utilizing existing open-source code data, our approach improves the representation and processing of source code, thereby improving task performance.

Sequential recommendation aims to leverage users' historical behaviors to predict their next interaction. Existing works have not yet addressed two main challenges in sequential recommendation. First, user behaviors in their rich historical sequences are often implicit and noisy preference signals, they cannot sufficiently reflect users' actual preferences. In addition, users' dynamic preferences often change rapidly over time, and hence it is difficult to capture user patterns in their historical sequences. In this work, we propose a graph neural network model called SURGE (short for SeqUential Recommendation with Graph neural nEtworks) to address these two issues. Specifically, SURGE integrates different types of preferences in long-term user behaviors into clusters in the graph by re-constructing loose item sequences into tight item-item interest graphs based on metric learning. This helps explicitly distinguish users' core interests, by forming dense clusters in the interest graph. Then, we perform cluster-aware and query-aware graph convolutional propagation and graph pooling on the constructed graph. It dynamically fuses and extracts users' current activated core interests from noisy user behavior sequences. We conduct extensive experiments on both public and proprietary industrial datasets. Experimental results demonstrate significant performance gains of our proposed method compared to state-of-the-art methods. Further studies on sequence length confirm that our method can model long behavioral sequences effectively and efficiently.

We propose a novel method for automatic reasoning on knowledge graphs based on debate dynamics. The main idea is to frame the task of triple classification as a debate game between two reinforcement learning agents which extract arguments -- paths in the knowledge graph -- with the goal to promote the fact being true (thesis) or the fact being false (antithesis), respectively. Based on these arguments, a binary classifier, called the judge, decides whether the fact is true or false. The two agents can be considered as sparse, adversarial feature generators that present interpretable evidence for either the thesis or the antithesis. In contrast to other black-box methods, the arguments allow users to get an understanding of the decision of the judge. Since the focus of this work is to create an explainable method that maintains a competitive predictive accuracy, we benchmark our method on the triple classification and link prediction task. Thereby, we find that our method outperforms several baselines on the benchmark datasets FB15k-237, WN18RR, and Hetionet. We also conduct a survey and find that the extracted arguments are informative for users.

Textual entailment is a fundamental task in natural language processing. Most approaches for solving the problem use only the textual content present in training data. A few approaches have shown that information from external knowledge sources like knowledge graphs (KGs) can add value, in addition to the textual content, by providing background knowledge that may be critical for a task. However, the proposed models do not fully exploit the information in the usually large and noisy KGs, and it is not clear how it can be effectively encoded to be useful for entailment. We present an approach that complements text-based entailment models with information from KGs by (1) using Personalized PageR- ank to generate contextual subgraphs with reduced noise and (2) encoding these subgraphs using graph convolutional networks to capture KG structure. Our technique extends the capability of text models exploiting structural and semantic information found in KGs. We evaluate our approach on multiple textual entailment datasets and show that the use of external knowledge helps improve prediction accuracy. This is particularly evident in the challenging BreakingNLI dataset, where we see an absolute improvement of 5-20% over multiple text-based entailment models.

Incompleteness is a common problem for existing knowledge graphs (KGs), and the completion of KG which aims to predict links between entities is challenging. Most existing KG completion methods only consider the direct relation between nodes and ignore the relation paths which contain useful information for link prediction. Recently, a few methods take relation paths into consideration but pay less attention to the order of relations in paths which is important for reasoning. In addition, these path-based models always ignore nonlinear contributions of path features for link prediction. To solve these problems, we propose a novel KG completion method named OPTransE. Instead of embedding both entities of a relation into the same latent space as in previous methods, we project the head entity and the tail entity of each relation into different spaces to guarantee the order of relations in the path. Meanwhile, we adopt a pooling strategy to extract nonlinear and complex features of different paths to further improve the performance of link prediction. Experimental results on two benchmark datasets show that the proposed model OPTransE performs better than state-of-the-art methods.

北京阿比特科技有限公司