亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Accurately forecasting the motion of traffic actors is crucial for the deployment of autonomous vehicles at a large scale. Current trajectory forecasting approaches primarily concentrate on optimizing a loss function with a specific metric, which can result in predictions that do not adhere to physical laws or violate external constraints. Our objective is to incorporate explicit knowledge priors that allow a network to forecast future trajectories in compliance with both the kinematic constraints of a vehicle and the geometry of the driving environment. To achieve this, we introduce a non-parametric pruning layer and attention layers to integrate the defined knowledge priors. Our proposed method is designed to ensure reachability guarantees for traffic actors in both complex and dynamic situations. By conditioning the network to follow physical laws, we can obtain accurate and safe predictions, essential for maintaining autonomous vehicles' safety and efficiency in real-world settings.In summary, this paper presents concepts that prevent off-road predictions for safe and reliable motion forecasting by incorporating knowledge priors into the training process.

相關內容

通過學習、實踐或(huo)探(tan)索所獲得的認識(shi)、判斷或(huo)技能。

Recently, sparse 3D convolutions have changed 3D object detection. Performing on par with the voting-based approaches, 3D CNNs are memory-efficient and scale to large scenes better. However, there is still room for improvement. With a conscious, practice-oriented approach to problem-solving, we analyze the performance of such methods and localize the weaknesses. Applying modifications that resolve the found issues one by one, we end up with TR3D: a fast fully-convolutional 3D object detection model trained end-to-end, that achieves state-of-the-art results on the standard benchmarks, ScanNet v2, SUN RGB-D, and S3DIS. Moreover, to take advantage of both point cloud and RGB inputs, we introduce an early fusion of 2D and 3D features. We employ our fusion module to make conventional 3D object detection methods multimodal and demonstrate an impressive boost in performance. Our model with early feature fusion, which we refer to as TR3D+FF, outperforms existing 3D object detection approaches on the SUN RGB-D dataset. Overall, besides being accurate, both TR3D and TR3D+FF models are lightweight, memory-efficient, and fast, thereby marking another milestone on the way toward real-time 3D object detection. Code is available at //github.com/SamsungLabs/tr3d .

The recent success of Large Language Models (LLMs) signifies an impressive stride towards artificial general intelligence. They have shown a promising prospect in automatically completing tasks upon user instructions, functioning as brain-like coordinators. The associated risks will be revealed as we delegate an increasing number of tasks to machines for automated completion. A big question emerges: how can we make machines behave responsibly when helping humans automate tasks as personal copilots? In this paper, we explore this question in depth from the perspectives of feasibility, completeness and security. In specific, we present Responsible Task Automation (ResponsibleTA) as a fundamental framework to facilitate responsible collaboration between LLM-based coordinators and executors for task automation with three empowered capabilities: 1) predicting the feasibility of the commands for executors; 2) verifying the completeness of executors; 3) enhancing the security (e.g., the protection of users' privacy). We further propose and compare two paradigms for implementing the first two capabilities. One is to leverage the generic knowledge of LLMs themselves via prompt engineering while the other is to adopt domain-specific learnable models. Moreover, we introduce a local memory mechanism for achieving the third capability. We evaluate our proposed ResponsibleTA on UI task automation and hope it could bring more attentions to ensuring LLMs more responsible in diverse scenarios.

Accuracy and computational efficiency are the most important metrics to Visual Inertial Navigation System (VINS). The existing VINS algorithms with either high accuracy or low computational complexity, are difficult to provide the high precision localization in resource-constrained devices. To this end, we propose a novel filter-based VINS framework named SchurVINS, which could guarantee both high accuracy by building a complete residual model and low computational complexity with Schur complement. Technically, we first formulate the full residual model where Gradient, Hessian and observation covariance are explicitly modeled. Then Schur complement is employed to decompose the full model into ego-motion residual model and landmark residual model. Finally, Extended Kalman Filter (EKF) update is implemented in these two models with high efficiency. Experiments on EuRoC and TUM-VI datasets show that our method notably outperforms state-of-the-art (SOTA) methods in both accuracy and computational complexity. We will open source our experimental code to benefit the community.

Efficient inference of Deep Neural Networks (DNNs) on resource-constrained edge devices is essential. Quantization and sparsity are key algorithmic techniques that translate to repetition and sparsity within tensors at the hardware-software interface. This paper introduces the concept of repetition-sparsity trade-off that helps explain computational efficiency during inference. We propose Signed Binarization, a unified co-design framework that synergistically integrates hardware-software systems, quantization functions, and representation learning techniques to address this trade-off. Our results demonstrate that Signed Binarization is more accurate than binarization with the same number of non-zero weights. Detailed analysis indicates that signed binarization generates a smaller distribution of effectual (non-zero) parameters nested within a larger distribution of total parameters, both of the same type, for a DNN block. Finally, our approach achieves a 26% speedup on real hardware, doubles energy efficiency, and reduces density by 2.8x compared to binary methods for ResNet 18, presenting an alternative solution for deploying efficient models in resource-limited environments.

The field of Multi-Agent Reinforcement Learning (MARL) is currently facing a reproducibility crisis. While solutions for standardized reporting have been proposed to address the issue, we still lack a benchmarking tool that enables standardization and reproducibility, while leveraging cutting-edge Reinforcement Learning (RL) implementations. In this paper, we introduce BenchMARL, the first MARL training library created to enable standardized benchmarking across different algorithms, models, and environments. BenchMARL uses TorchRL as its backend, granting it high performance and maintained state-of-the-art implementations while addressing the broad community of MARL PyTorch users. Its design enables systematic configuration and reporting, thus allowing users to create and run complex benchmarks from simple one-line inputs. BenchMARL is open-sourced on GitHub: //github.com/facebookresearch/BenchMARL

Vision Transformers have received significant attention due to their impressive performance in many vision tasks. While the token mixer or attention block has been studied in great detail, the channel mixer or feature mixing block (FFN or MLP) has not been explored in depth albeit it accounts for a bulk of the parameters and computation in a model. In this work, we study whether sparse feature mixing can replace the dense connections and confirm this with a block diagonal MLP structure that improves the accuracy by supporting larger expansion ratios. To improve the feature clusters formed by this structure and thereby further improve the accuracy, a lightweight, parameter-free, channel covariance attention (CCA) mechanism is introduced as a parallel branch during training. This design of CCA enables gradual feature mixing across channel groups during training whose contribution decays to zero as the training progresses to convergence. This allows the CCA block to be discarded during inference, thus enabling enhanced performance with no additional computational cost. The resulting $\textit{Scalable CHannEl MixEr}$ (SCHEME) can be plugged into any ViT architecture to obtain a gamut of models with different trade-offs between complexity and performance by controlling the block diagonal structure size in the MLP. This is shown by the introduction of a new family of SCHEMEformer models. Experiments on image classification, object detection, and semantic segmentation, with different ViT backbones, consistently demonstrate substantial accuracy gains over existing designs, especially under lower FLOPs regimes. For example, the SCHEMEformer establishes a new SOTA of 79.7% accuracy for ViTs using pure attention mixers on ImageNet-1K at 1.77G FLOPs.

Accurate estimation of Room Impulse Response (RIR), which captures an environment's acoustic properties, is important for speech processing and AR/VR applications. We propose AV-RIR, a novel multi-modal multi-task learning approach to accurately estimate the RIR from a given reverberant speech signal and the visual cues of its corresponding environment. AV-RIR builds on a novel neural codec-based architecture that effectively captures environment geometry and materials properties and solves speech dereverberation as an auxiliary task by using multi-task learning. We also propose Geo-Mat features that augment material information into visual cues and CRIP that improves late reverberation components in the estimated RIR via image-to-RIR retrieval by 86%. Empirical results show that AV-RIR quantitatively outperforms previous audio-only and visual-only approaches by achieving 36% - 63% improvement across various acoustic metrics in RIR estimation. Additionally, it also achieves higher preference scores in human evaluation. As an auxiliary benefit, dereverbed speech from AV-RIR shows competitive performance with the state-of-the-art in various spoken language processing tasks and outperforms reverberation time error score in the real-world AVSpeech dataset. Qualitative examples of both synthesized reverberant speech and enhanced speech can be found at //www.youtube.com/watch?v=tTsKhviukAE.

Recent years have witnessed the resurgence of knowledge engineering which is featured by the fast growth of knowledge graphs. However, most of existing knowledge graphs are represented with pure symbols, which hurts the machine's capability to understand the real world. The multi-modalization of knowledge graphs is an inevitable key step towards the realization of human-level machine intelligence. The results of this endeavor are Multi-modal Knowledge Graphs (MMKGs). In this survey on MMKGs constructed by texts and images, we first give definitions of MMKGs, followed with the preliminaries on multi-modal tasks and techniques. We then systematically review the challenges, progresses and opportunities on the construction and application of MMKGs respectively, with detailed analyses of the strength and weakness of different solutions. We finalize this survey with open research problems relevant to MMKGs.

The considerable significance of Anomaly Detection (AD) problem has recently drawn the attention of many researchers. Consequently, the number of proposed methods in this research field has been increased steadily. AD strongly correlates with the important computer vision and image processing tasks such as image/video anomaly, irregularity and sudden event detection. More recently, Deep Neural Networks (DNNs) offer a high performance set of solutions, but at the expense of a heavy computational cost. However, there is a noticeable gap between the previously proposed methods and an applicable real-word approach. Regarding the raised concerns about AD as an ongoing challenging problem, notably in images and videos, the time has come to argue over the pitfalls and prospects of methods have attempted to deal with visual AD tasks. Hereupon, in this survey we intend to conduct an in-depth investigation into the images/videos deep learning based AD methods. We also discuss current challenges and future research directions thoroughly.

Named entity recognition (NER) in Chinese is essential but difficult because of the lack of natural delimiters. Therefore, Chinese Word Segmentation (CWS) is usually considered as the first step for Chinese NER. However, models based on word-level embeddings and lexicon features often suffer from segmentation errors and out-of-vocabulary (OOV) words. In this paper, we investigate a Convolutional Attention Network called CAN for Chinese NER, which consists of a character-based convolutional neural network (CNN) with local-attention layer and a gated recurrent unit (GRU) with global self-attention layer to capture the information from adjacent characters and sentence contexts. Also, compared to other models, not depending on any external resources like lexicons and employing small size of char embeddings make our model more practical. Extensive experimental results show that our approach outperforms state-of-the-art methods without word embedding and external lexicon resources on different domain datasets including Weibo, MSRA and Chinese Resume NER dataset.

北京阿比特科技有限公司