Indoor positioning plays a pivotal role in a wide range of applications, from smart homes to industrial automation. In this paper, we propose a comprehensive approach for accurate positioning in indoor environments through the integration of existing Wi-Fi and Bluetooth Low Energy (BLE) devices. The proposed algorithm involves acquiring the received signal strength indicator (RSSI) data from these devices and capturing the complex interactions between RSSI and positions. To enhance the accuracy of the collected data, we first use a Kalman filter for denoising RSSI values, then categorize them into distinct classes using the K-nearest neighbor (KNN) algorithm. Incorporating the filtered RSSI data and the class information obtained from KNN, we then introduce a recurrent neural network (RNN) architecture to estimate the positions with a high precision. We further evaluate the accuracy of our proposed algorithm through testbed experiments using ESP32 system on chip with integrated Wi-Fi and BLE. The results show that we can accurately estimate the positions with an average error of 61.29 cm, which demonstrates a 56\% enhancement compared to the state-of-the-art existing works.
Scenario data play a vital role in autonomous driving related researches, and it is essential to obtain refined descriptions and labels to extract and index scenarios with different types of interactions. However, existing methods cannot cope well with the problem of scenario classification and comparison with vehicle interactions as the core. In this paper, we propose a framework for interaction-based refined scenario classification and labeling. Based on the summarized basic types of vehicle interactions, we slice scenario data stream into a series of scenario segments via spatiotemporal scenario evolution tree. The scenario segment statistics of many published scenario datasets are further analyzed. We also propose the scenario metric Graph-DTW based on Graph Computation Tree and Dynamic Time Warping to conduct refined scenario comparison and labeling. The extreme interactive scenarios and corner cases can be efficiently filtered and extracted. Moreover, testing examples on trajectory prediction model demonstrate the effectiveness and advantages of scenario labeling and the proposed metric. The overall framework can provide solid support for the usage and indexing of scenario data.
The Industrial Internet of Things (IIoT) refers to the use of interconnected smart devices, sensors, and other technologies to create a network of intelligent systems that can monitor and manage industrial processes. 6TiSCH (IPv6 over the Time Slotted Channel Hopping mode of IEEE 802.15.4e) as an enabling technology facilitates low-power and low-latency communication between IoT devices in industrial environments. The Routing Protocol for Low power and lossy networks (RPL), which is used as the de-facto routing protocol for 6TiSCH networks is observed to suffer from several limitations, especially during congestion in the network. Therefore, there is an immediate need for some modifications to the RPL to deal with this problem. Under traffic load which keeps on changing continuously at different instants of time, the proposed mechanism aims at finding the appropriate parent for a node that can forward the packet to the destination through the least congested path with minimal packet loss. This facilitates congestion management under dynamic traffic loads. For this, a new metric for routing using the concept of exponential weighting has been proposed, which takes the number of packets present in the queue of the node into account when choosing the parent at a particular instance of time. Additionally, the paper proposes a parent selection and swapping mechanism for congested networks. Performance evaluations are carried out in order to validate the proposed work. The results show an improvement in the performance of RPL under heavy and dynamic traffic loads.
The advancement of generative artificial intelligence (GAI) has driven revolutionary applications like ChatGPT. The widespread of these applications relies on the mixture of experts (MoE), which contains multiple experts and selectively engages them for each task to lower operation costs while maintaining performance. Despite MoE, GAI faces challenges in resource consumption when deployed on user devices. This paper proposes mobile edge networks supported MoE-based GAI. We first review the MoE from traditional AI and GAI perspectives, including structure, principles, and applications. We then propose a framework that transfers subtasks to devices in mobile edge networks, aiding GAI model operation on user devices. We discuss challenges in this process and introduce a deep reinforcement learning based algorithm to select edge devices for subtask execution. Experimental results will show that our framework not only facilitates GAI's deployment on resource-limited devices but also generates higher-quality content compared to methods without edge network support.
Autonomous robot navigation within the dynamic unknown environment is of crucial significance for mobile robotic applications including robot navigation in last-mile delivery and robot-enabled automated supplies in industrial and hospital delivery applications. Current solutions still suffer from limitations, such as the robot cannot recognize unknown objects in real time and cannot navigate freely in a dynamic, narrow, and complex environment. We propose a complete software framework for autonomous robot perception and navigation within very dense obstacles and dense human crowds. First, we propose a framework that accurately detects and segments open-world object categories in a zero-shot manner, which overcomes the over-segmentation limitation of the current SAM model. Second, we proposed the distillation strategy to distill the knowledge to segment the free space of the walkway for robot navigation without the label. In the meantime, we design the trimming strategy that works collaboratively with distillation to enable lightweight inference to deploy the neural network on edge devices such as NVIDIA-TX2 or Xavier NX during autonomous navigation. Integrated into the robot navigation system, extensive experiments demonstrate that our proposed framework has achieved superior performance in terms of both accuracy and efficiency in robot scene perception and autonomous robot navigation.
In unknown cluttered and dynamic environments such as disaster scenes, mobile robots need to perform target-driven navigation in order to find people or objects of interest, while being solely guided by images of the targets. In this paper, we introduce NavFormer, a novel end-to-end transformer architecture developed for robot target-driven navigation in unknown and dynamic environments. NavFormer leverages the strengths of both 1) transformers for sequential data processing and 2) self-supervised learning (SSL) for visual representation to reason about spatial layouts and to perform collision-avoidance in dynamic settings. The architecture uniquely combines dual-visual encoders consisting of a static encoder for extracting invariant environment features for spatial reasoning, and a general encoder for dynamic obstacle avoidance. The primary robot navigation task is decomposed into two sub-tasks for training: single robot exploration and multi-robot collision avoidance. We perform cross-task training to enable the transfer of learned skills to the complex primary navigation task without the need for task-specific fine-tuning. Simulated experiments demonstrate that NavFormer can effectively navigate a mobile robot in diverse unknown environments, outperforming existing state-of-the-art methods in terms of success rate and success weighted by (normalized inverse) path length. Furthermore, a comprehensive ablation study is performed to evaluate the impact of the main design choices of the structure and training of NavFormer, further validating their effectiveness in the overall system.
Large Language Models (LLMs) have demonstrated impressive performance across a wide range of applications; however, assessing their reasoning capabilities remains a significant challenge. In this paper, we introduce a framework grounded in group and symmetry principles, which have played a crucial role in fields such as physics and mathematics, and offer another way to evaluate their capabilities. While the proposed framework is general, to showcase the benefits of employing these properties, we focus on arithmetic reasoning and investigate the performance of these models on four group properties: closure, identity, inverse, and associativity. Our findings reveal that LLMs studied in this work struggle to preserve group properties across different test regimes. In the closure test, we observe biases towards specific outputs and an abrupt degradation in their performance from 100% to 0% after a specific sequence length. They also perform poorly in the identity test, which represents adding irrelevant information in the context, and show sensitivity when subjected to inverse test, which examines the robustness of the model with respect to negation. In addition, we demonstrate that breaking down problems into smaller steps helps LLMs in the associativity test that we have conducted. To support these tests we have developed a synthetic dataset which will be released.
Multi-object tracking (MOT) is a crucial component of situational awareness in military defense applications. With the growing use of unmanned aerial systems (UASs), MOT methods for aerial surveillance is in high demand. Application of MOT in UAS presents specific challenges such as moving sensor, changing zoom levels, dynamic background, illumination changes, obscurations and small objects. In this work, we present a robust object tracking architecture aimed to accommodate for the noise in real-time situations. We propose a kinematic prediction model, called Deep Extended Kalman Filter (DeepEKF), in which a sequence-to-sequence architecture is used to predict entity trajectories in latent space. DeepEKF utilizes a learned image embedding along with an attention mechanism trained to weight the importance of areas in an image to predict future states. For the visual scoring, we experiment with different similarity measures to calculate distance based on entity appearances, including a convolutional neural network (CNN) encoder, pre-trained using Siamese networks. In initial evaluation experiments, we show that our method, combining scoring structure of the kinematic and visual models within a MHT framework, has improved performance especially in edge cases where entity motion is unpredictable, or the data presents frames with significant gaps.
Graph Neural Networks (GNN) has demonstrated the superior performance in many challenging applications, including the few-shot learning tasks. Despite its powerful capacity to learn and generalize from few samples, GNN usually suffers from severe over-fitting and over-smoothing as the model becomes deep, which limit the model scalability. In this work, we propose a novel Attentive GNN to tackle these challenges, by incorporating a triple-attention mechanism, \ie node self-attention, neighborhood attention, and layer memory attention. We explain why the proposed attentive modules can improve GNN for few-shot learning with theoretical analysis and illustrations. Extensive experiments show that the proposed Attentive GNN outperforms the state-of-the-art GNN-based methods for few-shot learning over the mini-ImageNet and Tiered-ImageNet datasets, with both inductive and transductive settings.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.
Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.