亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

As quantum computing advances, traditional cryptographic security measures, including token obfuscation, are increasingly vulnerable to quantum attacks. This paper introduces a quantum-enhanced approach to token obfuscation leveraging quantum superposition and multi-basis verification to establish a robust defense against these threats. In our method, tokens are encoded in superposition states, making them simultaneously exist in multiple states until measured, thus enhancing obfuscation complexity. Multi-basis verification further secures these tokens by enforcing validation across multiple quantum bases, thwarting unauthorized access. Additionally, we incorporate a quantum decay protocol and a refresh mechanism to manage the token life-cycle securely. Our experimental results demonstrate significant improvements in token security and robustness, validating this approach as a promising solution for quantum-secure cryptographic applications. This work not only highlights the feasibility of quantum-based token obfuscation but also lays the foundation for future quantum-safe security architectures.

相關內容

Code explanation plays a crucial role in the software engineering domain, aiding developers in grasping code functionality efficiently. Recent work shows that the performance of LLMs for code explanation improves in a few-shot setting, especially when the few-shot examples are selected intelligently. State-of-the-art approaches for such Selective Shot Learning (SSL) include token-based and embedding-based methods. However, these SSL approaches have been evaluated on proprietary LLMs, without much exploration on open-source Code-LLMs. Additionally, these methods lack consideration for programming language syntax. To bridge these gaps, we present a comparative study and propose a novel SSL method (SSL_ner) that utilizes entity information for few-shot example selection. We present several insights and show the effectiveness of SSL_ner approach over state-of-the-art methods across two datasets. To the best of our knowledge, this is the first systematic benchmarking of open-source Code-LLMs while assessing the performances of the various few-shot examples selection approaches for the code explanation task.

Emotion recognition based on body movements is vital in human-computer interaction. However, existing emotion recognition methods predominantly focus on enhancing classification accuracy, often neglecting the provision of textual explanations to justify their classifications. In this paper, we propose an Emotion-Action Interpreter powered by Large Language Model (EAI-LLM), which not only recognizes emotions but also generates textual explanations by treating 3D body movement data as unique input tokens within large language models (LLMs). Specifically, we propose a multi-granularity skeleton tokenizer designed for LLMs, which separately extracts spatio-temporal tokens and semantic tokens from the skeleton data. This approach allows LLMs to generate more nuanced classification descriptions while maintaining robust classification performance. Furthermore, we treat the skeleton sequence as a specific language and propose a unified skeleton token module. This module leverages the extensive background knowledge and language processing capabilities of LLMs to address the challenges of joint training on heterogeneous datasets, thereby significantly enhancing recognition accuracy on individual datasets. Experimental results demonstrate that our model achieves recognition accuracy comparable to existing methods. More importantly, with the support of background knowledge from LLMs, our model can generate detailed emotion descriptions based on classification results, even when trained on a limited amount of labeled skeleton data.

In recent years, differential privacy has emerged as the de facto standard for sharing statistics of datasets while limiting the disclosure of private information about the involved individuals. This is achieved by randomly perturbing the statistics to be published, which in turn leads to a privacy-accuracy trade-off: larger perturbations provide stronger privacy guarantees, but they result in less accurate statistics that offer lower utility to the recipients. Of particular interest are therefore optimal mechanisms that provide the highest accuracy for a pre-selected level of privacy. To date, work in this area has focused on specifying families of perturbations a priori and subsequently proving their asymptotic and/or best-in-class optimality. In this paper, we develop a class of mechanisms that enjoy non-asymptotic and unconditional optimality guarantees. To this end, we formulate the mechanism design problem as an infinite-dimensional distributionally robust optimization problem. We show that the problem affords a strong dual, and we exploit this duality to develop converging hierarchies of finite-dimensional upper and lower bounding problems. Our upper (primal) bounds correspond to implementable perturbations whose suboptimality can be bounded by our lower (dual) bounds. Both bounding problems can be solved within seconds via cutting plane techniques that exploit the inherent problem structure. Our numerical experiments demonstrate that our perturbations can outperform the previously best results from the literature on artificial as well as standard benchmark problems.

Utilising quantum computing technology to enhance artificial intelligence systems is expected to improve training and inference times, increase robustness against noise and adversarial attacks, and reduce the number of parameters without compromising accuracy. However, moving beyond proof-of-concept or simulations to develop practical applications of these systems while ensuring high software quality faces significant challenges due to the limitations of quantum hardware and the underdeveloped knowledge base in software engineering for such systems. In this work, we have conducted a systematic mapping study to identify the challenges and solutions associated with the software architecture of quantum-enhanced artificial intelligence systems. The results of the systematic mapping study reveal several architectural patterns that describe how quantum components can be integrated into inference engines, as well as middleware patterns that facilitate communication between classical and quantum components. Each pattern realises a trade-off between various software quality attributes, such as efficiency, scalability, trainability, simplicity, portability, and deployability. The outcomes of this work have been compiled into a catalogue of architectural patterns.

Data rebalancing techniques, including oversampling and undersampling, are a common approach to addressing the challenges of imbalanced data. To tackle unresolved problems related to both oversampling and undersampling, we propose a new undersampling approach that: (i) avoids the pitfalls of noise and overlap caused by synthetic data and (ii) avoids the pitfall of under-fitting caused by random undersampling. Instead of undersampling majority data randomly, our method undersamples datapoints based on their ability to improve model loss. Using improved model loss as a proxy measurement for classification performance, our technique assesses a datapoint's impact on loss and rejects those unable to improve it. In so doing, our approach rejects majority datapoints redundant to datapoints already accepted and, thereby, finds an optimal subset of majority training data for classification. The accept/reject component of our algorithm is motivated by a bilevel optimization problem uniquely formulated to identify the optimal training set we seek. Experimental results show our proposed technique with F1 scores up to 10% higher than state-of-the-art methods.

Optimizing spectral graph neural networks (GNNs) remains a critical challenge in the field, yet the underlying processes are not well understood. In this paper, we investigate the inherent differences between graph convolution parameters and feature transformation parameters in spectral GNNs and their impact on the optimization landscape. Our analysis reveals that these differences contribute to a poorly conditioned problem, resulting in suboptimal performance. To address this issue, we introduce the concept of the block condition number of the Hessian matrix, which characterizes the difficulty of poorly conditioned problems in spectral GNN optimization. We then propose an asymmetric learning approach, dynamically preconditioning gradients during training to alleviate poorly conditioned problems. Theoretically, we demonstrate that asymmetric learning can reduce block condition numbers, facilitating easier optimization. Extensive experiments on eighteen benchmark datasets show that asymmetric learning consistently improves the performance of spectral GNNs for both heterophilic and homophilic graphs. This improvement is especially notable for heterophilic graphs, where the optimization process is generally more complex than for homophilic graphs. Code is available at //github.com/Mia-321/asym-opt.git.

Network-based intrusion detection system (NIDS) monitors network traffic for malicious activities, forming the frontline defense against increasing attacks over information infrastructures. Although promising, our quantitative analysis shows that existing methods perform inconsistently in declaring various attacks, and perform poorly in few-shot intrusion detections. We reveal that the underlying cause is entangled distributions of flow features. This motivates us to propose DIDS-MFL, a disentangled intrusion detection method to handle various intrusion detection scenarios. DIDS-MFL involves two key components, respectively: a double Disentanglementbased Intrusion Detection System (DIDS) and a plug-and-play Multi-scale Few-shot Learning-based (MFL) intrusion detection module. Specifically, the proposed DIDS first disentangles traffic features by a non-parameterized optimization, automatically differentiating tens and hundreds of complex features of various attacks. Such differentiated features will be further disentangled to highlight the attack-specific features. Our DIDS additionally uses a novel graph diffusion method that dynamically fuses the network topology in evolving data streams. Furthermore, the proposed MFL involves an alternating optimization framework to address the entangled representations in few-shot traffic threats with rigorous derivation. MFL first captures multiscale information in latent space to distinguish attack-specific information and then optimizes the disentanglement term to highlight the attack-specific information. Finally, MFL fuses and alternately solves them in an end-to-end way. Experiments show the superiority of our proposed DIDS-MFL. Our code is available at //github.com/qcydm/DIDS-MFL

Despite the crucial need for formal safety and security verification of programs, discovering loop invariants remains a significant challenge. Static analysis is a primary technique for inferring loop invariants but often relies on substantial assumptions about underlying theories. Data-driven methods supported by dynamic analysis and machine learning algorithms have shown impressive performance in inferring loop invariants for some challenging programs. However, state-of-the-art data-driven techniques do not offer theoretical guarantees for finding loop invariants. We present a novel technique that leverages the simulated annealing (SA) search algorithm combined with SMT solvers and computational geometry to provide probabilistic guarantees for inferring loop invariants using data-driven methods. Our approach enhances the SA search with real analysis to define the search space and employs parallelism to increase the probability of success. To ensure the convergence of our algorithm, we adapt e-nets, a key concept from computational geometry. Our tool, DLIA2, implements these algorithms and demonstrates competitive performance against state-of-the-art techniques. We also identify a subclass of programs, on which we outperform the current state-of-the-art tool GSpacer.

Feature selection is crucial for pinpointing relevant features in high-dimensional datasets, mitigating the 'curse of dimensionality,' and enhancing machine learning performance. Traditional feature selection methods for classification use data from all classes to select features for each class. This paper explores feature selection methods that select features for each class separately, using class models based on low-rank generative methods and introducing a signal-to-noise ratio (SNR) feature selection criterion. This novel approach has theoretical true feature recovery guarantees under certain assumptions and is shown to outperform some existing feature selection methods on standard classification datasets.

Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).

北京阿比特科技有限公司