亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We investigate the issue of parameter estimation with nonuniform negative sampling for imbalanced data. We first prove that, with imbalanced data, the available information about unknown parameters is only tied to the relatively small number of positive instances, which justifies the usage of negative sampling. However, if the negative instances are subsampled to the same level of the positive cases, there is information loss. To maintain more information, we derive the asymptotic distribution of a general inverse probability weighted (IPW) estimator and obtain the optimal sampling probability that minimizes its variance. To further improve the estimation efficiency over the IPW method, we propose a likelihood-based estimator by correcting log odds for the sampled data and prove that the improved estimator has the smallest asymptotic variance among a large class of estimators. It is also more robust to pilot misspecification. We validate our approach on simulated data as well as a real click-through rate dataset with more than 0.3 trillion instances, collected over a period of a month. Both theoretical and empirical results demonstrate the effectiveness of our method.

相關內容

In epidemics many interesting quantities, like the reproduction number, depend on the incubation period (time from infection to symptom onset) and/or the generation time (time until a new person is infected from another infected person). Therefore, estimation of the distribution of these two quantities is of distinct interest. However, this is a challenging problem since it is normally not possible to obtain precise observations of these two variables. Instead, in the beginning of a pandemic, it is possible to observe for infection pairs the time of symptom onset for both people as well as a window for infection of the first person (e.g. because of travel to a risk area). In this paper we suggest a simple semi-parametric sieve-estimation method based on Laguerre-Polynomials for estimation of these distributions. We provide detailed theory for consistency and illustrate the finite sample performance for small datasets via a simulation study.

Real-world networks often come with side information that can help to improve the performance of network analysis tasks such as clustering. Despite a large number of empirical and theoretical studies conducted on network clustering methods during the past decade, the added value of side information and the methods used to incorporate it optimally in clustering algorithms are relatively less understood. We propose a new iterative algorithm to cluster networks with side information for nodes (in the form of covariates) and show that our algorithm is optimal under the Contextual Symmetric Stochastic Block Model. Our algorithm can be applied to general Contextual Stochastic Block Models and avoids hyperparameter tuning in contrast to previously proposed methods. We confirm our theoretical results on synthetic data experiments where our algorithm significantly outperforms other methods, and show that it can also be applied to signed graphs. Finally we demonstrate the practical interest of our method on real data.

In the field of finance, insurance, and system reliability, etc., it is often of interest to measure the dependence among variables by modeling a multivariate distribution using a copula. The copula models with parametric assumptions are easy to estimate but can be highly biased when such assumptions are false, while the empirical copulas are non-smooth and often not genuine copula making the inference about dependence challenging in practice. As a compromise, the empirical Bernstein copula provides a smooth estimator but the estimation of tuning parameters remains elusive. In this paper, by using the so-called empirical checkerboard copula we build a hierarchical empirical Bayes model that enables the estimation of a smooth copula function for arbitrary dimensions. The proposed estimator based on the multivariate Bernstein polynomials is itself a genuine copula and the selection of its dimension-varying degrees is data-dependent. We also show that the proposed copula estimator provides a more accurate estimate of several multivariate dependence measures which can be obtained in closed form. We investigate the asymptotic and finite-sample performance of the proposed estimator and compare it with some nonparametric estimators through simulation studies. An application to portfolio risk management is presented along with a quantification of estimation uncertainty.

Few-shot learning has recently emerged as a new challenge in the deep learning field: unlike conventional methods that train the deep neural networks (DNNs) with a large number of labeled data, it asks for the generalization of DNNs on new classes with few annotated samples. Recent advances in few-shot learning mainly focus on image classification while in this paper we focus on object detection. The initial explorations in few-shot object detection tend to simulate a classification scenario by using the positive proposals in images with respect to certain object class while discarding the negative proposals of that class. Negatives, especially hard negatives, however, are essential to the embedding space learning in few-shot object detection. In this paper, we restore the negative information in few-shot object detection by introducing a new negative- and positive-representative based metric learning framework and a new inference scheme with negative and positive representatives. We build our work on a recent few-shot pipeline RepMet with several new modules to encode negative information for both training and testing. Extensive experiments on ImageNet-LOC and PASCAL VOC show our method substantially improves the state-of-the-art few-shot object detection solutions. Our code is available at //github.com/yang-yk/NP-RepMet.

Average precision (AP), the area under the recall-precision (RP) curve, is the standard performance measure for object detection. Despite its wide acceptance, it has a number of shortcomings, the most important of which are (i) the inability to distinguish very different RP curves, and (ii) the lack of directly measuring bounding box localization accuracy. In this paper, we propose 'Localization Recall Precision (LRP) Error', a new metric which we specifically designed for object detection. LRP Error is composed of three components related to localization, false negative (FN) rate and false positive (FP) rate. Based on LRP, we introduce the 'Optimal LRP', the minimum achievable LRP error representing the best achievable configuration of the detector in terms of recall-precision and the tightness of the boxes. In contrast to AP, which considers precisions over the entire recall domain, Optimal LRP determines the 'best' confidence score threshold for a class, which balances the trade-off between localization and recall-precision. In our experiments, we show that, for state-of-the-art object (SOTA) detectors, Optimal LRP provides richer and more discriminative information than AP. We also demonstrate that the best confidence score thresholds vary significantly among classes and detectors. Moreover, we present LRP results of a simple online video object detector which uses a SOTA still image object detector and show that the class-specific optimized thresholds increase the accuracy against the common approach of using a general threshold for all classes. We provide the source code that can compute LRP for the PASCAL VOC and MSCOCO datasets in //github.com/cancam/LRP. Our source code can easily be adapted to other datasets as well.

We propose a new method of estimation in topic models, that is not a variation on the existing simplex finding algorithms, and that estimates the number of topics K from the observed data. We derive new finite sample minimax lower bounds for the estimation of A, as well as new upper bounds for our proposed estimator. We describe the scenarios where our estimator is minimax adaptive. Our finite sample analysis is valid for any number of documents (n), individual document length (N_i), dictionary size (p) and number of topics (K), and both p and K are allowed to increase with n, a situation not handled well by previous analyses. We complement our theoretical results with a detailed simulation study. We illustrate that the new algorithm is faster and more accurate than the current ones, although we start out with a computational and theoretical disadvantage of not knowing the correct number of topics K, while we provide the competing methods with the correct value in our simulations.

Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.

Image segmentation is still an open problem especially when intensities of the interested objects are overlapped due to the presence of intensity inhomogeneity (also known as bias field). To segment images with intensity inhomogeneities, a bias correction embedded level set model is proposed where Inhomogeneities are Estimated by Orthogonal Primary Functions (IEOPF). In the proposed model, the smoothly varying bias is estimated by a linear combination of a given set of orthogonal primary functions. An inhomogeneous intensity clustering energy is then defined and membership functions of the clusters described by the level set function are introduced to rewrite the energy as a data term of the proposed model. Similar to popular level set methods, a regularization term and an arc length term are also included to regularize and smooth the level set function, respectively. The proposed model is then extended to multichannel and multiphase patterns to segment colourful images and images with multiple objects, respectively. It has been extensively tested on both synthetic and real images that are widely used in the literature and public BrainWeb and IBSR datasets. Experimental results and comparison with state-of-the-art methods demonstrate that advantages of the proposed model in terms of bias correction and segmentation accuracy.

During recent years, active learning has evolved into a popular paradigm for utilizing user's feedback to improve accuracy of learning algorithms. Active learning works by selecting the most informative sample among unlabeled data and querying the label of that point from user. Many different methods such as uncertainty sampling and minimum risk sampling have been utilized to select the most informative sample in active learning. Although many active learning algorithms have been proposed so far, most of them work with binary or multi-class classification problems and therefore can not be applied to problems in which only samples from one class as well as a set of unlabeled data are available. Such problems arise in many real-world situations and are known as the problem of learning from positive and unlabeled data. In this paper we propose an active learning algorithm that can work when only samples of one class as well as a set of unlabelled data are available. Our method works by separately estimating probability desnity of positive and unlabeled points and then computing expected value of informativeness to get rid of a hyper-parameter and have a better measure of informativeness./ Experiments and empirical analysis show promising results compared to other similar methods.

In this paper we introduce a covariance framework for the analysis of EEG and MEG data that takes into account observed temporal stationarity on small time scales and trial-to-trial variations. We formulate a model for the covariance matrix, which is a Kronecker product of three components that correspond to space, time and epochs/trials, and consider maximum likelihood estimation of the unknown parameter values. An iterative algorithm that finds approximations of the maximum likelihood estimates is proposed. We perform a simulation study to assess the performance of the estimator and investigate the influence of different assumptions about the covariance factors on the estimated covariance matrix and on its components. Apart from that, we illustrate our method on real EEG and MEG data sets. The proposed covariance model is applicable in a variety of cases where spontaneous EEG or MEG acts as source of noise and realistic noise covariance estimates are needed for accurate dipole localization, such as in evoked activity studies, or where the properties of spontaneous EEG or MEG are themselves the topic of interest, such as in combined EEG/fMRI experiments in which the correlation between EEG and fMRI signals is investigated.

北京阿比特科技有限公司