亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

There is a growing demand for transparency in search engines to understand how search results are curated and to enhance users' trust. Prior research has introduced search result explanations with a focus on how to explain, assuming explanations are beneficial. Our study takes a step back to examine if search explanations are needed and when they are likely to provide benefits. Additionally, we summarize key characteristics of helpful explanations and share users' perspectives on explanation features provided by Google and Bing. Interviews with non-technical individuals reveal that users do not always seek or understand search explanations and mostly desire them for complex and critical tasks. They find Google's search explanations too obvious but appreciate the ability to contest search results. Based on our findings, we offer design recommendations for search engines and explanations to help users better evaluate search results and enhance their search experience.

相關內容

Conformal inference is a popular tool for constructing prediction intervals (PI). We consider here the scenario of post-selection/selective conformal inference, that is PIs are reported only for individuals selected from an unlabeled test data. To account for multiplicity, we develop a general split conformal framework to construct selective PIs with the false coverage-statement rate (FCR) control. We first investigate the Benjamini and Yekutieli (2005)'s FCR-adjusted method in the present setting, and show that it is able to achieve FCR control but yields uniformly inflated PIs. We then propose a novel solution to the problem, named as Selective COnditional conformal Predictions (SCOP), which entails performing selection procedures on both calibration set and test set and construct marginal conformal PIs on the selected sets by the aid of conditional empirical distribution obtained by the calibration set. Under a unified framework and exchangeable assumptions, we show that the SCOP can exactly control the FCR. More importantly, we provide non-asymptotic miscoverage bounds for a general class of selection procedures beyond exchangeablity and discuss the conditions under which the SCOP is able to control the FCR. As special cases, the SCOP with quantile-based selection or conformal p-values-based multiple testing procedures enjoys valid coverage guarantee under mild conditions. Numerical results confirm the effectiveness and robustness of SCOP in FCR control and show that it achieves more narrowed PIs over existing methods in many settings.

There has been a growing interest in recent years in modelling multiple modalities (or views) of data to for example, understand the relationship between modalities or to generate missing data. Multi-view autoencoders have gained significant traction for their adaptability and versatility in modelling multi-modal data, demonstrating an ability to tailor their approach to suit the characteristics of the data at hand. However, most multi-view autoencoders have inconsistent notation and are often implemented using different coding frameworks. To address this, we present a unified mathematical framework for multi-view autoencoders, consolidating their formulations. Moreover, we offer insights into the motivation and theoretical advantages of each model. To facilitate accessibility and practical use, we extend the documentation and functionality of the previously introduced \texttt{multi-view-AE} library. This library offers Python implementations of numerous multi-view autoencoder models, presented within a user-friendly framework. Through benchmarking experiments, we evaluate our implementations against previous ones, demonstrating comparable or superior performance. This work aims to establish a cohesive foundation for multi-modal modelling, serving as a valuable educational resource in the field.

The Bell regression model (BRM) is a statistical model that is often used in the analysis of count data that exhibits overdispersion. In this study, we propose a Bayesian analysis of the BRM and offer a new perspective on its application. Specifically, we introduce a G-prior distribution for Bayesian inference in BRM, in addition to a flat-normal prior distribution. To compare the performance of the proposed prior distributions, we conduct a simulation study and demonstrate that the G-prior distribution provides superior estimation results for the BRM. Furthermore, we apply the methodology to real data and compare the BRM to the Poisson regression model using various model selection criteria. Our results provide valuable insights into the use of Bayesian methods for estimation and inference of the BRM and highlight the importance of considering the choice of prior distribution in the analysis of count data.

In decision-making, maxitive functions are used for worst-case and best-case evaluations. Maxitivity gives rise to a rich structure that is well-studied in the context of the pointwise order. In this article, we investigate maxitivity with respect to general preorders and provide a representation theorem for such functionals. The results are illustrated for different stochastic orders in the literature, including the usual stochastic order, the increasing convex/concave order, and the dispersive order.

Charts, figures, and text derived from data play an important role in decision making, from data-driven policy development to day-to-day choices informed by online articles. Making sense of, or fact-checking, outputs means understanding how they relate to the underlying data. Even for domain experts with access to the source code and data sets, this poses a significant challenge. In this paper we introduce a new program analysis framework which supports interactive exploration of fine-grained I/O relationships directly through computed outputs, making use of dynamic dependence graphs. Our main contribution is a novel notion in data provenance which we call related inputs, a relation of mutual relevance or "cognacy" which arises between inputs when they contribute to common features of the output. Queries of this form allow readers to ask questions like "What outputs use this data element, and what other data elements are used along with it?". We show how Jonsson and Tarski's concept of conjugate operators on Boolean algebras appropriately characterises the notion of cognacy in a dependence graph, and give a procedure for computing related inputs over such a graph.

Important advances in pillar domains are derived from exploiting query-logs which represents users interest and preferences. Deep understanding of users provides useful knowledge which can influence strongly decision-making. In this work, we want to extract valuable information from Linked Open Data (LOD) query-logs. LOD logs have experienced significant growth due to the large exploitation of LOD datasets. However, exploiting these logs is a difficult task because of their complex structure. Moreover, these logs suffer from many risks related to their Quality and Provenance, impacting their trust. To tackle these issues, we start by clearly defining the ecosystem of LOD query-logs. Then, we provide an end-to-end solution to exploit these logs. At the end, real LOD logs are used and a set of experiments are conducted to validate the proposed solution.

To date, most methods for simulating conditioned diffusions are limited to the Euclidean setting. The conditioned process can be constructed using a change of measure known as Doob's $h$-transform. The specific type of conditioning depends on a function $h$ which is typically unknown in closed form. To resolve this, we extend the notion of guided processes to a manifold $M$, where one replaces $h$ by a function based on the heat kernel on $M$. We consider the case of a Brownian motion with drift, constructed using the frame bundle of $M$, conditioned to hit a point $x_T$ at time $T$. We prove equivalence of the laws of the conditioned process and the guided process with a tractable Radon-Nikodym derivative. Subsequently, we show how one can obtain guided processes on any manifold $N$ that is diffeomorphic to $M$ without assuming knowledge of the heat kernel on $N$. We illustrate our results with numerical simulations and an example of parameter estimation where a diffusion process on the torus is observed discretely in time.

The theory of two projections is utilized to study two-component Gibbs samplers. Through this theory, previously intractable problems regarding the asymptotic variances of two-component Gibbs samplers are reduced to elementary matrix algebra exercises. It is found that in terms of asymptotic variance, the two-component random-scan Gibbs sampler is never much worse, and could be considerably better than its deterministic-scan counterpart, provided that the selection probability is appropriately chosen. This is especially the case when there is a large discrepancy in computation cost between the two components. The result contrasts with the known fact that the deterministic-scan version has a faster convergence rate, which can also be derived from the method herein. On the other hand, a modified version of the deterministic-scan sampler that accounts for computation cost can outperform the random-scan version.

Hashing has been widely used in approximate nearest search for large-scale database retrieval for its computation and storage efficiency. Deep hashing, which devises convolutional neural network architecture to exploit and extract the semantic information or feature of images, has received increasing attention recently. In this survey, several deep supervised hashing methods for image retrieval are evaluated and I conclude three main different directions for deep supervised hashing methods. Several comments are made at the end. Moreover, to break through the bottleneck of the existing hashing methods, I propose a Shadow Recurrent Hashing(SRH) method as a try. Specifically, I devise a CNN architecture to extract the semantic features of images and design a loss function to encourage similar images projected close. To this end, I propose a concept: shadow of the CNN output. During optimization process, the CNN output and its shadow are guiding each other so as to achieve the optimal solution as much as possible. Several experiments on dataset CIFAR-10 show the satisfying performance of SRH.

Time Series Classification (TSC) is an important and challenging problem in data mining. With the increase of time series data availability, hundreds of TSC algorithms have been proposed. Among these methods, only a few have considered Deep Neural Networks (DNNs) to perform this task. This is surprising as deep learning has seen very successful applications in the last years. DNNs have indeed revolutionized the field of computer vision especially with the advent of novel deeper architectures such as Residual and Convolutional Neural Networks. Apart from images, sequential data such as text and audio can also be processed with DNNs to reach state-of-the-art performance for document classification and speech recognition. In this article, we study the current state-of-the-art performance of deep learning algorithms for TSC by presenting an empirical study of the most recent DNN architectures for TSC. We give an overview of the most successful deep learning applications in various time series domains under a unified taxonomy of DNNs for TSC. We also provide an open source deep learning framework to the TSC community where we implemented each of the compared approaches and evaluated them on a univariate TSC benchmark (the UCR/UEA archive) and 12 multivariate time series datasets. By training 8,730 deep learning models on 97 time series datasets, we propose the most exhaustive study of DNNs for TSC to date.

北京阿比特科技有限公司