亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose a novel methodology (namely, MuLER) that transforms any reference-based evaluation metric for text generation, such as machine translation (MT) into a fine-grained analysis tool. Given a system and a metric, MuLER quantifies how much the chosen metric penalizes specific error types (e.g., errors in translating names of locations). MuLER thus enables a detailed error analysis which can lead to targeted improvement efforts for specific phenomena. We perform experiments in both synthetic and naturalistic settings to support MuLER's validity and showcase its usability in MT evaluation, and other tasks, such as summarization. Analyzing all submissions to WMT in 2014-2020, we find consistent trends. For example, nouns and verbs are among the most frequent POS tags. However, they are among the hardest to translate. Performance on most POS tags improves with overall system performance, but a few are not thus correlated (their identity changes from language to language). Preliminary experiments with summarization reveal similar trends.

相關內容

Large language models~(LLM) like ChatGPT have become indispensable to artificial general intelligence~(AGI), demonstrating excellent performance in various natural language processing tasks. In the real world, graph data is ubiquitous and an essential part of AGI and prevails in domains like social network analysis, bioinformatics and recommender systems. The training corpus of large language models often includes some algorithmic components, which allows them to achieve certain effects on some graph data-related problems. However, there is still little research on their performance on a broader range of graph-structured data. In this study, we conduct an extensive investigation to assess the proficiency of LLMs in comprehending graph data, employing a diverse range of structural and semantic-related tasks. Our analysis encompasses 10 distinct tasks that evaluate the LLMs' capabilities in graph understanding. Through our study, we not only uncover the current limitations of language models in comprehending graph structures and performing associated reasoning tasks but also emphasize the necessity for further advancements and novel approaches to enhance their graph processing capabilities. Our findings contribute valuable insights towards bridging the gap between language models and graph understanding, paving the way for more effective graph mining and knowledge extraction.

The transformative influence of Large Language Models (LLMs) is profoundly reshaping the Artificial Intelligence (AI) technology domain. Notably, ChatGPT distinguishes itself within these models, demonstrating remarkable performance in multi-turn conversations and exhibiting code proficiency across an array of languages. In this paper, we carry out a comprehensive evaluation of ChatGPT's coding capabilities based on what is to date the largest catalog of coding challenges. Our focus is on the python programming language and problems centered on data structures and algorithms, two topics at the very foundations of Computer Science. We evaluate ChatGPT for its ability to generate correct solutions to the problems fed to it, its code quality, and nature of run-time errors thrown by its code. Where ChatGPT code successfully executes, but fails to solve the problem at hand, we look into patterns in the test cases passed in order to gain some insights into how wrong ChatGPT code is in these kinds of situations. To infer whether ChatGPT might have directly memorized some of the data that was used to train it, we methodically design an experiment to investigate this phenomena. Making comparisons with human performance whenever feasible, we investigate all the above questions from the context of both its underlying learning models (GPT-3.5 and GPT-4), on a vast array sub-topics within the main topics, and on problems having varying degrees of difficulty.

Large language models (LLMs) are gaining increasing popularity in both academia and industry, owing to their unprecedented performance in various applications. As LLMs continue to play a vital role in both research and daily use, their evaluation becomes increasingly critical, not only at the task level, but also at the society level for better understanding of their potential risks. Over the past years, significant efforts have been made to examine LLMs from various perspectives. This paper presents a comprehensive review of these evaluation methods for LLMs, focusing on three key dimensions: what to evaluate, where to evaluate, and how to evaluate. Firstly, we provide an overview from the perspective of evaluation tasks, encompassing general natural language processing tasks, reasoning, medical usage, ethics, educations, natural and social sciences, agent applications, and other areas. Secondly, we answer the `where' and `how' questions by diving into the evaluation methods and benchmarks, which serve as crucial components in assessing performance of LLMs. Then, we summarize the success and failure cases of LLMs in different tasks. Finally, we shed light on several future challenges that lie ahead in LLMs evaluation. Our aim is to offer invaluable insights to researchers in the realm of LLMs evaluation, thereby aiding the development of more proficient LLMs. Our key point is that evaluation should be treated as an essential discipline to better assist the development of LLMs. We consistently maintain the related open-source materials at: //github.com/MLGroupJLU/LLM-eval-survey.

Is it possible to train a general metric for evaluating text generation quality without human annotated ratings? Existing learned metrics either perform unsatisfactorily across text generation tasks or require human ratings for training on specific tasks. In this paper, we propose SESCORE2, a self-supervised approach for training a model-based metric for text generation evaluation. The key concept is to synthesize realistic model mistakes by perturbing sentences retrieved from a corpus. The primary advantage of the SESCORE2 is its ease of extension to many other languages while providing reliable severity estimation. We evaluate SESCORE2 and previous methods on four text generation tasks across three languages. SESCORE2 outperforms unsupervised metric PRISM on four text generation evaluation benchmarks, with a Kendall improvement of 0.078. Surprisingly, SESCORE2 even outperforms the supervised BLEURT and COMET on multiple text generation tasks. The code and data are available at //github.com/xu1998hz/SEScore2.

Multi-Task Learning (MTL) is a powerful technique that has gained popularity due to its performance improvement over traditional Single-Task Learning (STL). However, MTL is often challenging because there is an exponential number of possible task groupings, which can make it difficult to choose the best one, and some groupings might produce performance degradation due to negative interference between tasks. Furthermore, existing solutions are severely suffering from scalability issues, limiting any practical application. In our paper, we propose a new data-driven method that addresses these challenges and provides a scalable and modular solution for classification task grouping based on hand-crafted features, specifically Data Maps, which capture the training behavior for each classification task during the MTL training. We experiment with the method demonstrating its effectiveness, even on an unprecedented number of tasks (up to 100).

Lexical matching remains the de facto evaluation method for open-domain question answering (QA). Unfortunately, lexical matching fails completely when a plausible candidate answer does not appear in the list of gold answers, which is increasingly the case as we shift from extractive to generative models. The recent success of large language models (LLMs) for QA aggravates lexical matching failures since candidate answers become longer, thereby making matching with the gold answers even more challenging. Without accurate evaluation, the true progress in open-domain QA remains unknown. In this paper, we conduct a thorough analysis of various open-domain QA models, including LLMs, by manually evaluating their answers on a subset of NQ-open, a popular benchmark. Our assessments reveal that while the true performance of all models is significantly underestimated, the performance of the InstructGPT (zero-shot) LLM increases by nearly +60%, making it on par with existing top models, and the InstructGPT (few-shot) model actually achieves a new state-of-the-art on NQ-open. We also find that more than 50% of lexical matching failures are attributed to semantically equivalent answers. We further demonstrate that regex matching ranks QA models consistent with human judgments, although still suffering from unnecessary strictness. Finally, we demonstrate that automated evaluation models are a reasonable surrogate for lexical matching in some circumstances, but not for long-form answers generated by LLMs. The automated models struggle in detecting hallucinations in LLM answers and are thus unable to evaluate LLMs. At this time, there appears to be no substitute for human evaluation.

The ever-increasing size of language models curtails their widespread availability to the community, thereby galvanizing many companies into offering access to large language models through APIs. One particular type, suitable for dense retrieval, is a semantic embedding service that builds vector representations of input text. With a growing number of publicly available APIs, our goal in this paper is to analyze existing offerings in realistic retrieval scenarios, to assist practitioners and researchers in finding suitable services according to their needs. Specifically, we investigate the capabilities of existing semantic embedding APIs on domain generalization and multilingual retrieval. For this purpose, we evaluate these services on two standard benchmarks, BEIR and MIRACL. We find that re-ranking BM25 results using the APIs is a budget-friendly approach and is most effective in English, in contrast to the standard practice of employing them as first-stage retrievers. For non-English retrieval, re-ranking still improves the results, but a hybrid model with BM25 works best, albeit at a higher cost. We hope our work lays the groundwork for evaluating semantic embedding APIs that are critical in search and more broadly, for information access.

Despite the advancement of machine learning techniques in recent years, state-of-the-art systems lack robustness to "real world" events, where the input distributions and tasks encountered by the deployed systems will not be limited to the original training context, and systems will instead need to adapt to novel distributions and tasks while deployed. This critical gap may be addressed through the development of "Lifelong Learning" systems that are capable of 1) Continuous Learning, 2) Transfer and Adaptation, and 3) Scalability. Unfortunately, efforts to improve these capabilities are typically treated as distinct areas of research that are assessed independently, without regard to the impact of each separate capability on other aspects of the system. We instead propose a holistic approach, using a suite of metrics and an evaluation framework to assess Lifelong Learning in a principled way that is agnostic to specific domains or system techniques. Through five case studies, we show that this suite of metrics can inform the development of varied and complex Lifelong Learning systems. We highlight how the proposed suite of metrics quantifies performance trade-offs present during Lifelong Learning system development - both the widely discussed Stability-Plasticity dilemma and the newly proposed relationship between Sample Efficient and Robust Learning. Further, we make recommendations for the formulation and use of metrics to guide the continuing development of Lifelong Learning systems and assess their progress in the future.

Deep long-tailed learning, one of the most challenging problems in visual recognition, aims to train well-performing deep models from a large number of images that follow a long-tailed class distribution. In the last decade, deep learning has emerged as a powerful recognition model for learning high-quality image representations and has led to remarkable breakthroughs in generic visual recognition. However, long-tailed class imbalance, a common problem in practical visual recognition tasks, often limits the practicality of deep network based recognition models in real-world applications, since they can be easily biased towards dominant classes and perform poorly on tail classes. To address this problem, a large number of studies have been conducted in recent years, making promising progress in the field of deep long-tailed learning. Considering the rapid evolution of this field, this paper aims to provide a comprehensive survey on recent advances in deep long-tailed learning. To be specific, we group existing deep long-tailed learning studies into three main categories (i.e., class re-balancing, information augmentation and module improvement), and review these methods following this taxonomy in detail. Afterward, we empirically analyze several state-of-the-art methods by evaluating to what extent they address the issue of class imbalance via a newly proposed evaluation metric, i.e., relative accuracy. We conclude the survey by highlighting important applications of deep long-tailed learning and identifying several promising directions for future research.

The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.

北京阿比特科技有限公司