亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

相關內容

Cooking recipes are challenging to translate to robot plans as they feature rich linguistic complexity, temporally-extended interconnected tasks, and an almost infinite space of possible actions. Our key insight is that combining a source of cooking domain knowledge with a formalism that captures the temporal richness of cooking recipes could enable the extraction of unambiguous, robot-executable plans. In this work, we use Linear Temporal Logic (LTL) as a formal language expressive enough to model the temporal nature of cooking recipes. Leveraging a pretrained Large Language Model (LLM), we present Cook2LTL, a system that translates instruction steps from an arbitrary cooking recipe found on the internet to a set of LTL formulae, grounding high-level cooking actions to a set of primitive actions that are executable by a manipulator in a kitchen environment. Cook2LTL makes use of a caching scheme that dynamically builds a queryable action library at runtime. We instantiate Cook2LTL in a realistic simulation environment (AI2-THOR), and evaluate its performance across a series of cooking recipes. We demonstrate that our system significantly decreases LLM API calls (-51%), latency (-59%), and cost (-42%) compared to a baseline that queries the LLM for every newly encountered action at runtime.

Background Medical research generates millions of publications and it is a great challenge for researchers to utilize this information in full since its scale and complexity greatly surpasses human reading capabilities. Automated text mining can help extract and connect information spread across this large body of literature but this technology is not easily accessible to life scientists. Results Here, we developed an easy-to-use end-to-end pipeline for deep learning- and dictionary-based named entity recognition (NER) of typical entities found in medical research articles, including diseases, cells, chemicals, genes/proteins, and species. The pipeline can access and process large medical research article collections (PubMed, CORD-19) or raw text and incorporates a series of deep learning models fine-tuned on the HUNER corpora collection. In addition, the pipeline can perform dictionary-based NER related to COVID-19 and other medical topics. Users can also load their own NER models and dictionaries to include additional entities. The output consists of publication-ready ranked lists and graphs of detected entities and files containing the annotated texts. An associated script allows rapid inspection of the results for specific entities of interest. As model use cases, the pipeline was deployed on two collections of autophagy-related abstracts from PubMed and on the CORD19 dataset, a collection of 764 398 research article abstracts related to COVID-19. Conclusions The NER pipeline we present is applicable in a variety of medical research settings and makes customizable text mining accessible to life scientists.

Large language models generate high-quality responses with potential misinformation, underscoring the need for regulation by distinguishing AI-generated and human-written texts. Watermarking is pivotal in this context, which involves embedding hidden markers in texts during the LLM inference phase, which is imperceptible to humans. Current watermarking algorithms, however, face the challenge of achieving both the detectability of inserted watermarks and the semantic integrity of generated texts, where enhancing one aspect often undermines the other. To overcome this, we introduce a novel multi-objective optimization (MOO) approach for watermarking that utilizes lightweight networks to generate token-specific watermarking logits and splitting ratios. By leveraging MOO to optimize for both detection and semantic objective functions, our method simultaneously achieves detectability and semantic integrity. Experimental results show that our method outperforms current watermarking techniques in enhancing the detectability of texts generated by LLMs while maintaining their semantic coherence. Our code is available at //github.com/mignonjia/TS_watermark.

The recent surge in research focused on generating synthetic data from large language models (LLMs), especially for scenarios with limited data availability, marks a notable shift in Generative Artificial Intelligence (AI). Their ability to perform comparably to real-world data positions this approach as a compelling solution to low-resource challenges. This paper delves into advanced technologies that leverage these gigantic LLMs for the generation of task-specific training data. We outline methodologies, evaluation techniques, and practical applications, discuss the current limitations, and suggest potential pathways for future research.

This paper investigates the integration and assessment of IntelliGame, a gamification plugin initially designed for Java development, within the realm of JavaScript unit testing. We aim to verify the generalizability of IntelliGame to JavaScript development and to provide valuable insights into the experiment's design. For this, we first customize IntelliGame for JavaScript, and then conduct a controlled experiment involving 152 participants utilizing the Jest testing framework, and finally examine its influence on testing behavior and the overall developer experience. The findings from this study provide valuable insights for improving JavaScript testing methodologies through the incorporation of gamification.

Knowledge distillation, the technique of transferring knowledge from large, complex models to smaller ones, marks a pivotal step towards efficient AI deployment. Distilling Step-by-Step (DSS), a novel method utilizing chain-of-thought (CoT) distillation, has demonstrated promise by imbuing smaller models with the superior reasoning capabilities of their larger counterparts. In DSS, the distilled model acquires the ability to generate rationales and predict labels concurrently through a multi-task learning framework. However, DSS overlooks the intrinsic relationship between the two training tasks, leading to ineffective integration of CoT knowledge with the task of label prediction. To this end, we investigate the mutual relationship of the two tasks from Information Bottleneck perspective and formulate it as maximizing the mutual information of the representation features of the two tasks. We propose a variational approach to solve this optimization problem using a learning-based method. Our experimental results across four datasets demonstrate that our method outperforms the state-of-the-art DSS. Our findings offer insightful guidance for future research on language model distillation as well as applications involving CoT. Code and models will be released soon.

Natural language understanding (NLU) using neural network pipelines often requires additional context that is not solely present in the input data. Through Prior research, it has been evident that NLU benchmarks are susceptible to manipulation by neural models, wherein these models exploit statistical artifacts within the encoded external knowledge to artificially inflate performance metrics for downstream tasks. Our proposed approach, known as the Recap, Deliberate, and Respond (RDR) paradigm, addresses this issue by incorporating three distinct objectives within the neural network pipeline. Firstly, the Recap objective involves paraphrasing the input text using a paraphrasing model in order to summarize and encapsulate its essence. Secondly, the Deliberation objective entails encoding external graph information related to entities mentioned in the input text, utilizing a graph embedding model. Finally, the Respond objective employs a classification head model that utilizes representations from the Recap and Deliberation modules to generate the final prediction. By cascading these three models and minimizing a combined loss, we mitigate the potential for gaming the benchmark and establish a robust method for capturing the underlying semantic patterns, thus enabling accurate predictions. To evaluate the effectiveness of the RDR method, we conduct tests on multiple GLUE benchmark tasks. Our results demonstrate improved performance compared to competitive baselines, with an enhancement of up to 2\% on standard metrics. Furthermore, we analyze the observed evidence for semantic understanding exhibited by RDR models, emphasizing their ability to avoid gaming the benchmark and instead accurately capture the true underlying semantic patterns.

This article presents the affordances that Generative Artificial Intelligence can have in disinformation context, one of the major threats to our digitalized society. We present a research framework to generate customized agent-based social networks for disinformation simulations that would enable understanding and evaluation of the phenomena whilst discussing open challenges.

Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.

In order to answer natural language questions over knowledge graphs, most processing pipelines involve entity and relation linking. Traditionally, entity linking and relation linking has been performed either as dependent sequential tasks or independent parallel tasks. In this paper, we propose a framework called "EARL", which performs entity linking and relation linking as a joint single task. EARL uses a graph connection based solution to the problem. We model the linking task as an instance of the Generalised Travelling Salesman Problem (GTSP) and use GTSP approximate algorithm solutions. We later develop EARL which uses a pair-wise graph-distance based solution to the problem.The system determines the best semantic connection between all keywords of the question by referring to a knowledge graph. This is achieved by exploiting the "connection density" between entity candidates and relation candidates. The "connection density" based solution performs at par with the approximate GTSP solution.We have empirically evaluated the framework on a dataset with 5000 questions. Our system surpasses state-of-the-art scores for entity linking task by reporting an accuracy of 0.65 to 0.40 from the next best entity linker.

北京阿比特科技有限公司