亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

An important question in elections is the determine whether a candidate can be a winner when some votes are absent. We study this determining winner with the absent votes (WAV) problem when the votes are top-truncated. We show that the WAV problem is NP-complete for the single transferable vote, Maximin, and Copeland, and propose a special case of positional scoring rule such that the problem can be computed in polynomial time. Our results in top-truncated rankings differ from the results in full rankings as their hardness results still hold when the number of candidates or the number of missing votes are bounded, while we show that the problem can be solved in polynomial time in either case.

相關內容

Structural discovery amongst a set of variables is of interest in both static and dynamic settings. In the presence of lead-lag dependencies in the data, the dynamics of the system can be represented through a structural equation model (SEM) that simultaneously captures the contemporaneous and temporal relationships amongst the variables, with the former encoded through a directed acyclic graph (DAG) for model identification. In many real applications, a partial ordering amongst the nodes of the DAG is available, which makes it either beneficial or imperative to incorporate it as a constraint in the problem formulation. This paper develops an algorithm that can seamlessly incorporate a priori partial ordering information for solving a linear SEM (also known as Structural Vector Autoregression) under a high-dimensional setting. The proposed algorithm is provably convergent to a stationary point, and exhibits competitive performance on both synthetic and real data sets.

The interest in Empathetic and Emotional Support conversations among the public has significantly increased. To offer more sensitive and understanding responses, leveraging commonsense knowledge has become a common strategy to better understand psychological aspects and causality. However, such commonsense inferences can be out of context and unable to predict upcoming dialogue themes, resulting in responses that lack coherence and empathy. To remedy this issue, we present Prophetic Commonsense Inference, an innovative paradigm for inferring commonsense knowledge. By harnessing the capabilities of Large Language Models in understanding dialogue and making commonsense deductions, we train tunable models to bridge the gap between past and potential future dialogues. Extensive experiments conducted on EmpatheticDialogues and Emotion Support Conversation show that equipping dialogue agents with our proposed prophetic commonsense inference significantly enhances the quality of their responses.

Counterfactual Explanations (CEs) help address the question: How can the factors that influence the prediction of a predictive model be changed to achieve a more favorable outcome from a user's perspective? Thus, they bear the potential to guide the user's interaction with AI systems since they represent easy-to-understand explanations. To be applicable, CEs need to be realistic and actionable. In the literature, various methods have been proposed to generate CEs. However, the majority of research on CEs focuses on classification problems where questions like "What should I do to get my rejected loan approved?" are raised. In practice, answering questions like "What should I do to increase my salary?" are of a more regressive nature. In this paper, we introduce a novel method to generate CEs for a pre-trained regressor by first disentangling the label-relevant from the label-irrelevant dimensions in the latent space. CEs are then generated by combining the label-irrelevant dimensions and the predefined output. The intuition behind this approach is that the ideal counterfactual search should focus on the label-irrelevant characteristics of the input and suggest changes toward target-relevant characteristics. Searching in the latent space could help achieve this goal. We show that our method maintains the characteristics of the query sample during the counterfactual search. In various experiments, we demonstrate that the proposed method is competitive based on different quality measures on image and tabular datasets in regression problem settings. It efficiently returns results closer to the original data manifold compared to three state-of-the-art methods, which is essential for realistic high-dimensional machine learning applications. Our code will be made available as an open-source package upon the publication of this work.

User preference learning is generally a hard problem. Individual preferences are typically unknown even to users themselves, while the space of choices is infinite. Here we study user preference learning from information-theoretic perspective. We model preference learning as a system with two interacting sub-systems, one representing a user with his/her preferences and another one representing an agent that has to learn these preferences. The user with his/her behaviour is modeled by a parametric preference function. To efficiently learn the preferences and reduce search space quickly, we propose the agent that interacts with the user to collect the most informative data for learning. The agent presents two proposals to the user for evaluation, and the user rates them based on his/her preference function. We show that the optimum agent strategy for data collection and preference learning is a result of maximin optimization of the normalized weighted Kullback-Leibler (KL) divergence between true and agent-assigned predictive user response distributions. The resulting value of KL-divergence, which we also call remaining system uncertainty (RSU), provides an efficient performance metric in the absence of the ground truth. This metric characterises how well the agent can predict user and, thus, the quality of the underlying learned user (preference) model. Our proposed agent comprises sequential mechanisms for user model inference and proposal generation. To infer the user model (preference function), Bayesian approximate inference is used in the agent. The data collection strategy is to generate proposals, responses to which help resolving uncertainty associated with prediction of the user responses the most. The efficiency of our approach is validated by numerical simulations. Also a real-life example of preference learning application is provided.

Emotion recognition in conversation (ERC) aims to detect the emotion label for each utterance. Motivated by recent studies which have proven that feeding training examples in a meaningful order rather than considering them randomly can boost the performance of models, we propose an ERC-oriented hybrid curriculum learning framework. Our framework consists of two curricula: (1) conversation-level curriculum (CC); and (2) utterance-level curriculum (UC). In CC, we construct a difficulty measurer based on "emotion shift" frequency within a conversation, then the conversations are scheduled in an "easy to hard" schema according to the difficulty score returned by the difficulty measurer. For UC, it is implemented from an emotion-similarity perspective, which progressively strengthens the model's ability in identifying the confusing emotions. With the proposed model-agnostic hybrid curriculum learning strategy, we observe significant performance boosts over a wide range of existing ERC models and we are able to achieve new state-of-the-art results on four public ERC datasets.

A community reveals the features and connections of its members that are different from those in other communities in a network. Detecting communities is of great significance in network analysis. Despite the classical spectral clustering and statistical inference methods, we notice a significant development of deep learning techniques for community detection in recent years with their advantages in handling high dimensional network data. Hence, a comprehensive overview of community detection's latest progress through deep learning is timely to both academics and practitioners. This survey devises and proposes a new taxonomy covering different categories of the state-of-the-art methods, including deep learning-based models upon deep neural networks, deep nonnegative matrix factorization and deep sparse filtering. The main category, i.e., deep neural networks, is further divided into convolutional networks, graph attention networks, generative adversarial networks and autoencoders. The survey also summarizes the popular benchmark data sets, model evaluation metrics, and open-source implementations to address experimentation settings. We then discuss the practical applications of community detection in various domains and point to implementation scenarios. Finally, we outline future directions by suggesting challenging topics in this fast-growing deep learning field.

Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.

We propose a novel method for automatic reasoning on knowledge graphs based on debate dynamics. The main idea is to frame the task of triple classification as a debate game between two reinforcement learning agents which extract arguments -- paths in the knowledge graph -- with the goal to promote the fact being true (thesis) or the fact being false (antithesis), respectively. Based on these arguments, a binary classifier, called the judge, decides whether the fact is true or false. The two agents can be considered as sparse, adversarial feature generators that present interpretable evidence for either the thesis or the antithesis. In contrast to other black-box methods, the arguments allow users to get an understanding of the decision of the judge. Since the focus of this work is to create an explainable method that maintains a competitive predictive accuracy, we benchmark our method on the triple classification and link prediction task. Thereby, we find that our method outperforms several baselines on the benchmark datasets FB15k-237, WN18RR, and Hetionet. We also conduct a survey and find that the extracted arguments are informative for users.

Incompleteness is a common problem for existing knowledge graphs (KGs), and the completion of KG which aims to predict links between entities is challenging. Most existing KG completion methods only consider the direct relation between nodes and ignore the relation paths which contain useful information for link prediction. Recently, a few methods take relation paths into consideration but pay less attention to the order of relations in paths which is important for reasoning. In addition, these path-based models always ignore nonlinear contributions of path features for link prediction. To solve these problems, we propose a novel KG completion method named OPTransE. Instead of embedding both entities of a relation into the same latent space as in previous methods, we project the head entity and the tail entity of each relation into different spaces to guarantee the order of relations in the path. Meanwhile, we adopt a pooling strategy to extract nonlinear and complex features of different paths to further improve the performance of link prediction. Experimental results on two benchmark datasets show that the proposed model OPTransE performs better than state-of-the-art methods.

The present paper surveys neural approaches to conversational AI that have been developed in the last few years. We group conversational systems into three categories: (1) question answering agents, (2) task-oriented dialogue agents, and (3) chatbots. For each category, we present a review of state-of-the-art neural approaches, draw the connection between them and traditional approaches, and discuss the progress that has been made and challenges still being faced, using specific systems and models as case studies.

北京阿比特科技有限公司