In many repeated auction settings, participants care not only about how frequently they win but also how their winnings are distributed over time. This problem arises in various practical domains where avoiding congested demand is crucial, such as online retail sales and compute services, as well as in advertising campaigns that require sustained visibility over time. We introduce a simple model of this phenomenon, modeling it as a budgeted auction where the value of a win is a concave function of the time since the last win. This implies that for a given number of wins, even spacing over time is optimal. We also extend our model and results to the case when not all wins result in "conversions" (realization of actual gains), and the probability of conversion depends on a context. The goal is to maximize and evenly space conversions rather than just wins. We study the optimal policies for this setting in second-price auctions and offer learning algorithms for the bidders that achieve low regret against the optimal bidding policy in a Bayesian online setting. Our main result is a computationally efficient online learning algorithm that achieves $\tilde O(\sqrt T)$ regret. We achieve this by showing that an infinite-horizon Markov decision process (MDP) with the budget constraint in expectation is essentially equivalent to our problem, even when limiting that MDP to a very small number of states. The algorithm achieves low regret by learning a bidding policy that chooses bids as a function of the context and the system's state, which will be the time elapsed since the last win (or conversion). We show that state-independent strategies incur linear regret even without uncertainty of conversions. We complement this by showing that there are state-independent strategies that, while still having linear regret, achieve a $(1-\frac 1 e)$ approximation to the optimal reward.
Social norms are standards of behaviour common in a society. However, when agents make decisions without considering how others are impacted, norms can emerge that lead to the subjugation of certain agents. We present RAWL-E, a method to create ethical norm-learning agents. RAWL-E agents operationalise maximin, a fairness principle from Rawlsian ethics, in their decision-making processes to promote ethical norms by balancing societal well-being with individual goals. We evaluate RAWL-E agents in simulated harvesting scenarios. We find that norms emerging in RAWL-E agent societies enhance social welfare, fairness, and robustness, and yield higher minimum experience compared to those that emerge in agent societies that do not implement Rawlsian ethics.
In causal inference, treatment effects are typically estimated under the ignorability, or unconfoundedness, assumption, which is often unrealistic in observational data. By relaxing this assumption and conducting a sensitivity analysis, we introduce novel bounds and derive confidence intervals for the Average Potential Outcome (APO) - a standard metric for evaluating continuous-valued treatment or exposure effects. We demonstrate that these bounds are sharp under a continuous sensitivity model, in the sense that they give the smallest possible interval under this model, and propose a doubly robust version of our estimators. In a comparative analysis with the method of Jesson et al. (2022) (arXiv:2204.10022), using both simulated and real datasets, we show that our approach not only yields sharper bounds but also achieves good coverage of the true APO, with significantly reduced computation times.
Utilizing uniformly distributed sparse annotations, weakly supervised learning alleviates the heavy reliance on fine-grained annotations in point cloud semantic segmentation tasks. However, few works discuss the inhomogeneity of sparse annotations, albeit it is common in real-world scenarios. Therefore, this work introduces the probability density function into the gradient sampling approximation method to qualitatively analyze the impact of annotation sparsity and inhomogeneity under weakly supervised learning. Based on our analysis, we propose an Adaptive Annotation Distribution Network (AADNet) capable of robust learning on arbitrarily distributed sparse annotations. Specifically, we propose a label-aware point cloud downsampling strategy to increase the proportion of annotations involved in the training stage. Furthermore, we design the multiplicative dynamic entropy as the gradient calibration function to mitigate the gradient bias caused by non-uniformly distributed sparse annotations and explicitly reduce the epistemic uncertainty. Without any prior restrictions and additional information, our proposed method achieves comprehensive performance improvements at multiple label rates and different annotation distributions.
Understanding relations arising out of interactions among entities can be very difficult, and predicting them is even more challenging. This problem has many applications in various fields, such as financial networks and e-commerce. These relations can involve much more complexities than just involving more than two entities. One such scenario is evolving recursive relations between multiple entities, and so far, this is still an open problem. This work addresses the problem of forecasting higher-order interaction events that can be multi-relational and recursive. We pose the problem in the framework of representation learning of temporal hypergraphs that can capture complex relationships involving multiple entities. The proposed model, \textit{Relational Recursive Hyperedge Temporal Point Process} (RRHyperTPP) uses an encoder that learns a dynamic node representation based on the historical interaction patterns and then a hyperedge link prediction-based decoder to model the occurrence of interaction events. These learned representations are then used for downstream tasks involving forecasting the type and time of interactions. The main challenge in learning from hyperedge events is that the number of possible hyperedges grows exponentially with the number of nodes in the network. This will make the computation of negative log-likelihood of the temporal point process expensive, as the calculation of survival function requires a summation over all possible hyperedges. In our work, we develop a noise contrastive estimation method to learn the parameters of our model, and we have experimentally shown that our models perform better than previous state-of-the-art methods for interaction forecasting.
Diffusion Policies have become widely used in Imitation Learning, offering several appealing properties, such as generating multimodal and discontinuous behavior. As models are becoming larger to capture more complex capabilities, their computational demands increase, as shown by recent scaling laws. Therefore, continuing with the current architectures will present a computational roadblock. To address this gap, we propose Mixture-of-Denoising Experts (MoDE) as a novel policy for Imitation Learning. MoDE surpasses current state-of-the-art Transformer-based Diffusion Policies while enabling parameter-efficient scaling through sparse experts and noise-conditioned routing, reducing both active parameters by 40% and inference costs by 90% via expert caching. Our architecture combines this efficient scaling with noise-conditioned self-attention mechanism, enabling more effective denoising across different noise levels. MoDE achieves state-of-the-art performance on 134 tasks in four established imitation learning benchmarks (CALVIN and LIBERO). Notably, by pretraining MoDE on diverse robotics data, we achieve 4.01 on CALVIN ABC and 0.95 on LIBERO-90. It surpasses both CNN-based and Transformer Diffusion Policies by an average of 57% across 4 benchmarks, while using 90% fewer FLOPs and fewer active parameters compared to default Diffusion Transformer architectures. Furthermore, we conduct comprehensive ablations on MoDE's components, providing insights for designing efficient and scalable Transformer architectures for Diffusion Policies. Code and demonstrations are available at //mbreuss.github.io/MoDE_Diffusion_Policy/.
Although the current different types of SAM adaptation methods have achieved promising performance for various downstream tasks, such as prompt-based ones and adapter-based ones, most of them belong to the one-step adaptation paradigm. In real-world scenarios, we are generally confronted with the dynamic scenario where the data comes in a streaming manner. Driven by the practical need, in this paper, we first propose a novel Continual SAM adaptation (CoSAM) benchmark with 8 different task domains and carefully analyze the limitations of the existing SAM one-step adaptation methods in the continual segmentation scenario. Then we propose a novel simple-yet-effective Mixture of Domain Adapters (MoDA) algorithm which utilizes the Global Feature Tokens (GFT) and Global Assistant Tokens (GAT) modules to help the SAM encoder extract well-separated features for different task domains, and then provide the accurate task-specific information for continual learning. Extensive experiments demonstrate that our proposed MoDA obviously surpasses the existing classic continual learning methods, as well as prompt-based and adapter-based approaches for continual segmentation. Moreover, after sequential learning on the CoSAM benchmark with diverse data distributions, our MoDA maintains highly competitive results in the natural image domain, approaching the zero-shot performance of the original SAM, demonstrating its superior capability in knowledge preservation. Notably, the proposed MoDA can be seamlessly integrated into various one-step adaptation methods of SAM, which can consistently bring obvious performance gains. Code is available at \url{//github.com/yangjl1215/CoSAM}
Flocking is a behavior where multiple agents in a system attempt to stay close to each other while avoiding collision and maintaining a desired formation. This is observed in the natural world and has applications in robotics, including natural disaster search and rescue, wild animal tracking, and perimeter surveillance and patrol. Recently, large language models (LLMs) have displayed an impressive ability to solve various collaboration tasks as individual decision-makers. Solving multi-agent flocking with LLMs would demonstrate their usefulness in situations requiring spatial and decentralized decision-making. Yet, when LLM-powered agents are tasked with implementing multi-agent flocking, they fall short of the desired behavior. After extensive testing, we find that agents with LLMs as individual decision-makers typically opt to converge on the average of their initial positions or diverge from each other. After breaking the problem down, we discover that LLMs cannot understand maintaining a shape or keeping a distance in a meaningful way. Solving multi-agent flocking with LLMs would enhance their ability to understand collaborative spatial reasoning and lay a foundation for addressing more complex multi-agent tasks. This paper discusses the challenges LLMs face in multi-agent flocking and suggests areas for future improvement and research.
Emotion recognition in conversation (ERC) aims to detect the emotion label for each utterance. Motivated by recent studies which have proven that feeding training examples in a meaningful order rather than considering them randomly can boost the performance of models, we propose an ERC-oriented hybrid curriculum learning framework. Our framework consists of two curricula: (1) conversation-level curriculum (CC); and (2) utterance-level curriculum (UC). In CC, we construct a difficulty measurer based on "emotion shift" frequency within a conversation, then the conversations are scheduled in an "easy to hard" schema according to the difficulty score returned by the difficulty measurer. For UC, it is implemented from an emotion-similarity perspective, which progressively strengthens the model's ability in identifying the confusing emotions. With the proposed model-agnostic hybrid curriculum learning strategy, we observe significant performance boosts over a wide range of existing ERC models and we are able to achieve new state-of-the-art results on four public ERC datasets.
Sequential recommendation aims to leverage users' historical behaviors to predict their next interaction. Existing works have not yet addressed two main challenges in sequential recommendation. First, user behaviors in their rich historical sequences are often implicit and noisy preference signals, they cannot sufficiently reflect users' actual preferences. In addition, users' dynamic preferences often change rapidly over time, and hence it is difficult to capture user patterns in their historical sequences. In this work, we propose a graph neural network model called SURGE (short for SeqUential Recommendation with Graph neural nEtworks) to address these two issues. Specifically, SURGE integrates different types of preferences in long-term user behaviors into clusters in the graph by re-constructing loose item sequences into tight item-item interest graphs based on metric learning. This helps explicitly distinguish users' core interests, by forming dense clusters in the interest graph. Then, we perform cluster-aware and query-aware graph convolutional propagation and graph pooling on the constructed graph. It dynamically fuses and extracts users' current activated core interests from noisy user behavior sequences. We conduct extensive experiments on both public and proprietary industrial datasets. Experimental results demonstrate significant performance gains of our proposed method compared to state-of-the-art methods. Further studies on sequence length confirm that our method can model long behavioral sequences effectively and efficiently.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.