We study the fundamental problem of fairly dividing a set of indivisible items among agents with (general) monotone valuations. The notion of envy-freeness up to any item (EFX) is considered to be one of the most fascinating fairness concepts in this line of work. Unfortunately, despite significant efforts, existence of EFX allocations is a major open problem in fair division, thereby making the study of approximations and relaxations of EFX a natural line of research. Recently, Caragiannis et al. introduced a promising relaxation of EFX, called epistemic EFX (EEFX). We say an allocation to be EEFX if, for every agent, it is possible to shuffle the items in the remaining bundles so that she becomes "EFX-satisfied". Caragiannis et al. prove existence and polynomial-time computability of EEFX allocations for additive valuations. A natural question asks what happens when we consider valuations more general than additive? We address this important open question and answer it affirmatively by establishing the existence of EEFX allocations for an arbitrary number of agents with general monotone valuations. To the best of our knowledge, EEFX is the only known relaxation of EFX to have such strong existential guarantees. Furthermore, we complement our existential result by proving computational and information-theoretic lower bounds. We prove that even for an arbitrary number of (more than one) agents with identical submodular valuations, it is PLS-hard to compute EEFX allocations and it requires exponentially-many value queries to do so.
We explore a kind of first-order predicate logic with intended semantics in the reals. Compared to other approaches in the literature, we work predominantly in the multiplicative reals $[0,\infty]$, showing they support three generations of connectives, that we call non-linear, linear additive, and linear multiplicative. Means and harmonic means emerge as natural candidates for bounded existential and universal quantifiers, and in fact we see they behave as expected in relation to the other logical connectives. We explain this fact through the well-known fact that min/max and arithmetic mean/harmonic mean sit at opposite ends of a spectrum, that of p-means. We give syntax and semantics for this quantitative predicate logic, and as example applications, we show how softmax is the quantitative semantics of argmax, and R\'enyi entropy/Hill numbers are additive/multiplicative semantics of the same formula. Indeed, the additive reals also fit into the story by exploiting the Napierian duality $-\log \dashv 1/\exp$, which highlights a formal distinction between 'additive' and 'multiplicative' quantities. Finally, we describe two attempts at a categorical semantics via enriched hyperdoctrines. We discuss why hyperdoctrines are in fact probably inadequate for this kind of logic.
Rule-based adaptation is a foundational approach to self-adaptation, characterized by its human readability and rapid response. However, building high-performance and robust adaptation rules is often a challenge because it essentially involves searching the optimal design in a complex (variables) space. In response, this paper attempt to employ large language models (LLMs) as a optimizer to construct and optimize adaptation rules, leveraging the common sense and reasoning capabilities inherent in LLMs. Preliminary experiments conducted in SWIM have validated the effectiveness and limitation of our method.
Voting mechanisms are widely accepted and used methods for decentralized decision-making. Ensuring the acceptance of the voting mechanism's outcome is a crucial characteristic of robust voting systems. Consider this scenario: A group of individuals wants to choose an option from a set of alternatives without requiring an identification or proof-of-personhood system. Moreover, they want to implement utilitarianism as their selection criteria. In such a case, players could submit votes multiple times using dummy accounts, commonly known as a Sybil attack (SA), which presents a challenge for decentralized organizations. Is there a voting mechanism that always prevents players from benefiting by casting votes multiple times (SA-proof) while also selecting the alternative that maximizes the added valuations of all players (efficient)? One-person-one-vote is neither SA-proof nor efficient. Coin voting is SA-proof but not efficient. Quadratic voting is efficient but not SA-proof. This study uses Bayesian mechanism design to propose a solution. The mechanism's structure is as follows: Players make wealth deposits to indicate the strength of their preference for each alternative. Each player then receives an amount based on their deposit and the voting outcome. The proposed mechanism relies on two main concepts: 1) Transfers are influenced by the outcome in a way that each player's optimal action depends only on individual preferences and the number of alternatives; 2) A player who votes through multiple accounts slightly reduces the expected utility of all players more than the individual benefit gained. This study demonstrates that if players are risk-neutral and each player has private information about their preferences and beliefs, then the mechanism is SA-proof and efficient. This research provides new insights into the design of more robust decentralized decision-making mechanisms.
We revisit the setting of fairly allocating indivisible items when agents have different weights representing their entitlements. First, we propose a parameterized family of relaxations for weighted envy-freeness and the same for weighted proportionality; the parameters indicate whether smaller-weight or larger-weight agents should be given a higher priority. We show that each notion in these families can always be satisfied, but any two cannot necessarily be fulfilled simultaneously. We then introduce an intuitive weighted generalization of maximin share fairness and establish the optimal approximation of it that can be guaranteed. Furthermore, we characterize the implication relations between the various weighted fairness notions introduced in this and prior work, and relate them to the lower and upper quota axioms from apportionment.
Identifying the targets of hate speech is a crucial step in grasping the nature of such speech and, ultimately, in improving the detection of offensive posts on online forums. Much harmful content on online platforms uses implicit language especially when targeting vulnerable and protected groups such as using stereotypical characteristics instead of explicit target names, making it harder to detect and mitigate the language. In this study, we focus on identifying implied targets of hate speech, essential for recognizing subtler hate speech and enhancing the detection of harmful content on digital platforms. We define a new task aimed at identifying the targets even when they are not explicitly stated. To address that task, we collect and annotate target spans in three prominent implicit hate speech datasets: SBIC, DynaHate, and IHC. We call the resulting merged collection Implicit-Target-Span. The collection is achieved using an innovative pooling method with matching scores based on human annotations and Large Language Models (LLMs). Our experiments indicate that Implicit-Target-Span provides a challenging test bed for target span detection methods.
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.
Transformer is a type of deep neural network mainly based on self-attention mechanism which is originally applied in natural language processing field. Inspired by the strong representation ability of transformer, researchers propose to extend transformer for computer vision tasks. Transformer-based models show competitive and even better performance on various visual benchmarks compared to other network types such as convolutional networks and recurrent networks. In this paper we provide a literature review of these visual transformer models by categorizing them in different tasks and analyze the advantages and disadvantages of these methods. In particular, the main categories include the basic image classification, high-level vision, low-level vision and video processing. Self-attention in computer vision is also briefly revisited as self-attention is the base component in transformer. Efficient transformer methods are included for pushing transformer into real applications. Finally, we give a discussion about the further research directions for visual transformer.
Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.
Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).
We study the problem of textual relation embedding with distant supervision. To combat the wrong labeling problem of distant supervision, we propose to embed textual relations with global statistics of relations, i.e., the co-occurrence statistics of textual and knowledge base relations collected from the entire corpus. This approach turns out to be more robust to the training noise introduced by distant supervision. On a popular relation extraction dataset, we show that the learned textual relation embedding can be used to augment existing relation extraction models and significantly improve their performance. Most remarkably, for the top 1,000 relational facts discovered by the best existing model, the precision can be improved from 83.9% to 89.3%.