亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The recent trend toward deep learning has led to the development of a variety of highly innovative AI accelerator architectures. One such architecture, the Cerebras Wafer-Scale Engine 2 (WSE-2), features 40 GB of on-chip SRAM, making it a potentially attractive platform for latency- or bandwidth-bound HPC simulation workloads. In this study, we examine the feasibility of performing continuous energy Monte Carlo (MC) particle transport on the WSE-2 by porting a key kernel from the MC transport algorithm to Cerebras's CSL programming model. New algorithms for minimizing communication costs and for handling load balancing are developed and tested. The WSE-2 is found to run \SPEEDUP~times faster than a highly optimized CUDA version of the kernel run on an NVIDIA A100 GPU -- significantly outpacing the expected performance increase given the difference in transistor counts between the architectures.

相關內容

This study explores the application of anomaly detection (AD) methods in imbalanced learning tasks, focusing on fraud detection using real online credit card payment data. We assess the performance of several recent AD methods and compare their effectiveness against standard supervised learning methods. Offering evidence of distribution shift within our dataset, we analyze its impact on the tested models' performances. Our findings reveal that LightGBM exhibits significantly superior performance across all evaluated metrics but suffers more from distribution shifts than AD methods. Furthermore, our investigation reveals that LightGBM also captures the majority of frauds detected by AD methods. This observation challenges the potential benefits of ensemble methods to combine supervised, and AD approaches to enhance performance. In summary, this research provides practical insights into the utility of these techniques in real-world scenarios, showing LightGBM's superiority in fraud detection while highlighting challenges related to distribution shifts.

The influx of deep learning (DL) techniques into the field of survival analysis in recent years has led to substantial methodological progress; for instance, learning from unstructured or high-dimensional data such as images, text or omics data. In this work, we conduct a comprehensive systematic review of DL-based methods for time-to-event analysis, characterizing them according to both survival- and DL-related attributes. In summary, the reviewed methods often address only a small subset of tasks relevant to time-to-event data - e.g., single-risk right-censored data - and neglect to incorporate more complex settings. Our findings are summarized in an editable, open-source, interactive table: //survival-org.github.io/DL4Survival. As this research area is advancing rapidly, we encourage community contribution in order to keep this database up to date.

Automating software development processes through the orchestration of GitHub Action workflows has revolutionized the efficiency and agility of software delivery pipelines. This paper presents a detailed investigation into the use of Large Language Models (LLMs) specifically, GPT 3.5 and GPT 4 to generate and evaluate GitHub Action workflows for DevOps tasks. Our methodology involves data collection from public GitHub repositories, prompt engineering for LLM utilization, and evaluation metrics encompassing exact match scores, BLEU scores, and a novel DevOps Aware score. The research scrutinizes the proficiency of GPT 3.5 and GPT 4 in generating GitHub workflows, while assessing the influence of various prompt elements in constructing the most efficient pipeline. Results indicate substantial advancements in GPT 4, particularly in DevOps awareness and syntax correctness. The research introduces a GitHub App built on Probot, empowering users to automate workflow generation within GitHub ecosystem. This study contributes insights into the evolving landscape of AI-driven automation in DevOps practices.

Recent progress in self-supervised representation learning has resulted in models that are capable of extracting image features that are not only effective at encoding image level, but also pixel-level, semantics. These features have been shown to be effective for dense visual semantic correspondence estimation, even outperforming fully-supervised methods. Nevertheless, current self-supervised approaches still fail in the presence of challenging image characteristics such as symmetries and repeated parts. To address these limitations, we propose a new approach for semantic correspondence estimation that supplements discriminative self-supervised features with 3D understanding via a weak geometric spherical prior. Compared to more involved 3D pipelines, our model only requires weak viewpoint information, and the simplicity of our spherical representation enables us to inject informative geometric priors into the model during training. We propose a new evaluation metric that better accounts for repeated part and symmetry-induced mistakes. We present results on the challenging SPair-71k dataset, where we show that our approach demonstrates is capable of distinguishing between symmetric views and repeated parts across many object categories, and also demonstrate that we can generalize to unseen classes on the AwA dataset.

Across a wide array of disciplines, many researchers use machine learning (ML) algorithms to identify a subgroup of individuals who are likely to benefit from a treatment the most (``exceptional responders'') or those who are harmed by it. A common approach to this subgroup identification problem consists of two steps. First, researchers estimate the conditional average treatment effect (CATE) using an ML algorithm. Next, they use the estimated CATE to select those individuals who are predicted to be most affected by the treatment, either positively or negatively. Unfortunately, CATE estimates are often biased and noisy. In addition, utilizing the same data to both identify a subgroup and estimate its group average treatment effect results in a multiple testing problem. To address these challenges, we develop uniform confidence bands for estimation of the group average treatment effect sorted by generic ML algorithm (GATES). Using these uniform confidence bands, researchers can identify, with a statistical guarantee, a subgroup whose GATES exceeds a certain effect size, regardless of how this effect size is chosen. The validity of the proposed methodology depends solely on randomization of treatment and random sampling of units. Importantly, our method does not require modeling assumptions and avoids a computationally intensive resampling procedure. A simulation study shows that the proposed uniform confidence bands are reasonably informative and have an appropriate empirical coverage even when the sample size is as small as 100. We analyze a clinical trial of late-stage prostate cancer and find a relatively large proportion of exceptional responders.

The advent of Industrial Internet of Things (IIoT) has imposed more stringent requirements on industrial software in terms of communication delay, scalability, and maintainability. Microservice architecture (MSA), a novel software architecture that has emerged from cloud computing and DevOps, presents itself as the most promising solution due to its independently deployable and loosely coupled nature. Currently, practitioners are inclined to migrate industrial legacy systems to MSA, despite numerous challenges it presents. In this paper, we propose an automated microservice decomposition method for extracting microservice candidates based on spectral graph theory to address the problems associated with manual extraction, which is time-consuming, labor intensive, and highly subjective. The method is divided into three steps. Firstly, static and dynamic analysis tools are employed to extract dependency information of the legacy system. Subsequently, information is transformed into a graph structure that captures inter-class structure and performance relationships in legacy systems. Finally, graph-based clustering algorithm is utilized to identify potential microservice candidates that conform to the principles of high cohesion and low coupling. Comparative experiments with state of-the-art methods demonstrate the significant advantages of our proposed method in terms of performance metrics. Moreover, Practice show that our method can yield favorable results even without the involvement of domain experts.

Deep neural networks (DNNs) are widely used today, but they are vulnerable to adversarial attacks. To develop effective methods of defense, it is important to understand the potential weak spots of DNNs. Often attacks are organized taking into account the architecture of models (white-box approach) and based on gradient methods, but for real-world DNNs this approach in most cases is impossible. At the same time, several gradient-free optimization algorithms are used to attack black-box models. However, classical methods are often ineffective in the multidimensional case. To organize black-box attacks for computer vision models, in this work, we propose the use of an optimizer based on the low-rank tensor train (TT) format, which has gained popularity in various practical multidimensional applications in recent years. Combined with the attribution of the target image, which is built by the auxiliary (white-box) model, the TT-based optimization method makes it possible to organize an effective black-box attack by small perturbation of pixels in the target image. The superiority of the proposed approach over three popular baselines is demonstrated for five modern DNNs on the ImageNet dataset.

With the extremely rapid advances in remote sensing (RS) technology, a great quantity of Earth observation (EO) data featuring considerable and complicated heterogeneity is readily available nowadays, which renders researchers an opportunity to tackle current geoscience applications in a fresh way. With the joint utilization of EO data, much research on multimodal RS data fusion has made tremendous progress in recent years, yet these developed traditional algorithms inevitably meet the performance bottleneck due to the lack of the ability to comprehensively analyse and interpret these strongly heterogeneous data. Hence, this non-negligible limitation further arouses an intense demand for an alternative tool with powerful processing competence. Deep learning (DL), as a cutting-edge technology, has witnessed remarkable breakthroughs in numerous computer vision tasks owing to its impressive ability in data representation and reconstruction. Naturally, it has been successfully applied to the field of multimodal RS data fusion, yielding great improvement compared with traditional methods. This survey aims to present a systematic overview in DL-based multimodal RS data fusion. More specifically, some essential knowledge about this topic is first given. Subsequently, a literature survey is conducted to analyse the trends of this field. Some prevalent sub-fields in the multimodal RS data fusion are then reviewed in terms of the to-be-fused data modalities, i.e., spatiospectral, spatiotemporal, light detection and ranging-optical, synthetic aperture radar-optical, and RS-Geospatial Big Data fusion. Furthermore, We collect and summarize some valuable resources for the sake of the development in multimodal RS data fusion. Finally, the remaining challenges and potential future directions are highlighted.

Data augmentation, the artificial creation of training data for machine learning by transformations, is a widely studied research field across machine learning disciplines. While it is useful for increasing the generalization capabilities of a model, it can also address many other challenges and problems, from overcoming a limited amount of training data over regularizing the objective to limiting the amount data used to protect privacy. Based on a precise description of the goals and applications of data augmentation (C1) and a taxonomy for existing works (C2), this survey is concerned with data augmentation methods for textual classification and aims to achieve a concise and comprehensive overview for researchers and practitioners (C3). Derived from the taxonomy, we divided more than 100 methods into 12 different groupings and provide state-of-the-art references expounding which methods are highly promising (C4). Finally, research perspectives that may constitute a building block for future work are given (C5).

Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this survey, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art graph neural networks into different categories. With a focus on graph convolutional networks, we review alternative architectures that have recently been developed; these learning paradigms include graph attention networks, graph autoencoders, graph generative networks, and graph spatial-temporal networks. We further discuss the applications of graph neural networks across various domains and summarize the open source codes and benchmarks of the existing algorithms on different learning tasks. Finally, we propose potential research directions in this fast-growing field.

北京阿比特科技有限公司