We consider constraint satisfaction problems whose relations are defined in first-order logic over any uniform hypergraph satisfying certain weak abstract structural conditions. Our main result is a P/NP-complete complexity dichotomy for such CSPs. Surprisingly, the large class of structures under consideration falls into a mixed regime where neither the classical complexity reduction to finite-domain CSPs can be used as a black box, nor does the class exhibit order properties, known to prevent the application of this reduction. We introduce an algorithmic technique inspired by classical notions from the theory of finite-domain CSPs, and prove its correctness based on symmetries that depend on a linear order that is external to the structures under consideration.
Recent studies show strong generative performance in domain translation especially by using transfer learning techniques on the unconditional generator. However, the control between different domain features using a single model is still challenging. Existing methods often require additional models, which is computationally demanding and leads to unsatisfactory visual quality. In addition, they have restricted control steps, which prevents a smooth transition. In this paper, we propose a new approach for high-quality domain translation with better controllability. The key idea is to preserve source features within a disentangled subspace of a target feature space. This allows our method to smoothly control the degree to which it preserves source features while generating images from an entirely new domain using only a single model. Our extensive experiments show that the proposed method can produce more consistent and realistic images than previous works and maintain precise controllability over different levels of transformation. The code is available at //github.com/LeeDongYeun/FixNoise.
We propose sandwiched video compression -- a video compression system that wraps neural networks around a standard video codec. The sandwich framework consists of a neural pre- and post-processor with a standard video codec between them. The networks are trained jointly to optimize a rate-distortion loss function with the goal of significantly improving over the standard codec in various compression scenarios. End-to-end training in this setting requires a differentiable proxy for the standard video codec, which incorporates temporal processing with motion compensation, inter/intra mode decisions, and in-loop filtering. We propose differentiable approximations to key video codec components and demonstrate that the neural codes of the sandwich lead to significantly better rate-distortion performance compared to compressing the original frames of the input video in two important scenarios. When transporting high-resolution video via low-resolution HEVC, the sandwich system obtains 6.5 dB improvements over standard HEVC. More importantly, using the well-known perceptual similarity metric, LPIPS, we observe $~30 \%$ improvements in rate at the same quality over HEVC. Last but not least we show that pre- and post-processors formed by very modestly-parameterized, light-weight networks can closely approximate these results.
In computational biology, $k$-mers and edit distance are fundamental concepts. However, little is known about the metric space of all $k$-mers equipped with the edit distance. In this work, we explore the structure of the $k$-mer space by studying its maximal independent sets (MISs). An MIS is a sparse sketch of all $k$-mers with nice theoretical properties, and therefore admits critical applications in clustering, indexing, hashing, and sketching large-scale sequencing data, particularly those with high error-rates. Finding an MIS is a challenging problem, as the size of a $k$-mer space grows geometrically with respect to $k$. We propose three algorithms for this problem. The first and the most intuitive one uses a greedy strategy. The second method implements two techniques to avoid redundant comparisons by taking advantage of the locality-property of the $k$-mer space and the estimated bounds on the edit distance. The last algorithm avoids expensive calculations of the edit distance by translating the edit distance into the shortest path in a specifically designed graph. These algorithms are implemented and the calculated MISs of $k$-mer spaces and their statistical properties are reported and analyzed for $k$ up to 15. Source code is freely available at //github.com/Shao-Group/kmerspace .
Value iteration can find the optimal replenishment policy for a perishable inventory problem, but is computationally demanding due to the large state spaces that are required to represent the age profile of stock. The parallel processing capabilities of modern GPUs can reduce the wall time required to run value iteration by updating many states simultaneously. The adoption of GPU-accelerated approaches has been limited in operational research relative to other fields like machine learning, in which new software frameworks have made GPU programming widely accessible. We used the Python library JAX to implement value iteration and simulators of the underlying Markov decision processes in a high-level API, and relied on this library's function transformations and compiler to efficiently utilize GPU hardware. Our method can extend use of value iteration to settings that were previously considered infeasible or impractical. We demonstrate this on example scenarios from three recent studies which include problems with over 16 million states and additional problem features, such as substitution between products, that increase computational complexity. We compare the performance of the optimal replenishment policies to heuristic policies, fitted using simulation optimization in JAX which allowed the parallel evaluation of multiple candidate policy parameters on thousands of simulated years. The heuristic policies gave a maximum optimality gap of 2.49%. Our general approach may be applicable to a wide range of problems in operational research that would benefit from large-scale parallel computation on consumer-grade GPU hardware.
In this paper, we will show the $L^p$-resolvent estimate for the finite element approximation of the Stokes operator for $p \in \left( \frac{2N}{N+2}, \frac{2N}{N-2} \right)$, where $N \ge 2$ is the dimension of the domain. It is expected that this estimate can be applied to error estimates for finite element approximation of the non-stationary Navier--Stokes equations, since studies in this direction are successful in numerical analysis of nonlinear parabolic equations. To derive the resolvent estimate, we introduce the solution of the Stokes resolvent problem with a discrete external force. We then obtain local energy error estimate according to a novel localization technique and establish global $L^p$-type error estimates. The restriction for $p$ is caused by the treatment of lower-order terms appearing in the local energy error estimate. Our result may be a breakthrough in the $L^p$-theory of finite element methods for the non-stationary Navier--Stokes equations.
New emerging technologies powered by Artificial Intelligence (AI) have the potential to disruptively transform our societies for the better. In particular, data-driven learning approaches (i.e., Machine Learning (ML)) have been a true revolution in the advancement of multiple technologies in various application domains. But at the same time there is growing concern about certain intrinsic characteristics of these methodologies that carry potential risks to both safety and fundamental rights. Although there are mechanisms in the adoption process to minimize these risks (e.g., safety regulations), these do not exclude the possibility of harm occurring, and if this happens, victims should be able to seek compensation. Liability regimes will therefore play a key role in ensuring basic protection for victims using or interacting with these systems. However, the same characteristics that make AI systems inherently risky, such as lack of causality, opacity, unpredictability or their self and continuous learning capabilities, may lead to considerable difficulties when it comes to proving causation. This paper presents three case studies, as well as the methodology to reach them, that illustrate these difficulties. Specifically, we address the cases of cleaning robots, delivery drones and robots in education. The outcome of the proposed analysis suggests the need to revise liability regimes to alleviate the burden of proof on victims in cases involving AI technologies.
The international neuroscience community is building the first comprehensive atlases of brain cell types to understand how the brain functions from a higher resolution, and more integrated perspective than ever before. In order to build these atlases, subsets of neurons (e.g. serotonergic neurons, prefrontal cortical neurons etc.) are traced in individual brain samples by placing points along dendrites and axons. Then, the traces are mapped to common coordinate systems by transforming the positions of their points, which neglects how the transformation bends the line segments in between. In this work, we apply the theory of jets to describe how to preserve derivatives of neuron traces up to any order. We provide a framework to compute possible error introduced by standard mapping methods, which involves the Jacobian of the mapping transformation. We show how our first order method improves mapping accuracy in both simulated and real neuron traces, though zeroth order mapping is generally adequate in our real data setting. Our method is freely available in our open-source Python package brainlit.
This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.
Deep neural networks have achieved remarkable success in computer vision tasks. Existing neural networks mainly operate in the spatial domain with fixed input sizes. For practical applications, images are usually large and have to be downsampled to the predetermined input size of neural networks. Even though the downsampling operations reduce computation and the required communication bandwidth, it removes both redundant and salient information obliviously, which results in accuracy degradation. Inspired by digital signal processing theories, we analyze the spectral bias from the frequency perspective and propose a learning-based frequency selection method to identify the trivial frequency components which can be removed without accuracy loss. The proposed method of learning in the frequency domain leverages identical structures of the well-known neural networks, such as ResNet-50, MobileNetV2, and Mask R-CNN, while accepting the frequency-domain information as the input. Experiment results show that learning in the frequency domain with static channel selection can achieve higher accuracy than the conventional spatial downsampling approach and meanwhile further reduce the input data size. Specifically for ImageNet classification with the same input size, the proposed method achieves 1.41% and 0.66% top-1 accuracy improvements on ResNet-50 and MobileNetV2, respectively. Even with half input size, the proposed method still improves the top-1 accuracy on ResNet-50 by 1%. In addition, we observe a 0.8% average precision improvement on Mask R-CNN for instance segmentation on the COCO dataset.
Incompleteness is a common problem for existing knowledge graphs (KGs), and the completion of KG which aims to predict links between entities is challenging. Most existing KG completion methods only consider the direct relation between nodes and ignore the relation paths which contain useful information for link prediction. Recently, a few methods take relation paths into consideration but pay less attention to the order of relations in paths which is important for reasoning. In addition, these path-based models always ignore nonlinear contributions of path features for link prediction. To solve these problems, we propose a novel KG completion method named OPTransE. Instead of embedding both entities of a relation into the same latent space as in previous methods, we project the head entity and the tail entity of each relation into different spaces to guarantee the order of relations in the path. Meanwhile, we adopt a pooling strategy to extract nonlinear and complex features of different paths to further improve the performance of link prediction. Experimental results on two benchmark datasets show that the proposed model OPTransE performs better than state-of-the-art methods.