亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Given an undirected graph $G=(V,E)$ (i.e. the conflict graph) where $V$ is a set of $n$ vertices (representing the jobs), processing times $p \colon V \to \mathbb{Z}_>$, and $m\geq 2$ identical machines the Parallel Machine Scheduling with Conflicts (PMC) consists in finding an assignment $c \colon V \to [m]:=\{1,\ldots, m\}$ with $c(u)\neq c(v)$ for all $\{u,v\} \in E$ that minimizes the makespan $\max_{k \in [m]} \sum_{v \in V \colon c(v)=k} p(v)$. First we consider the natural assignment formulation for PMC using binary variables indexed by the jobs and machines, and discuss how to reduce the symmetries in such model. Then we propose a compact mixed integer linear programming formulation for PMC to tackle the issues related to symmetry and unbalanced enumeration tree associated with the assignment model. The proposed formulation for PMC uses a set of representative jobs (one in each machine) to express feasible solutions of the problem, and it is based on the representatives model for the vertex coloring problem. We present a polyhedral study of the associated polytope, and show classes of valid inequalities inherited from the stable set polytope. We describe branch-and-cut algorithms for PMC, and report on preliminary computational experiments with benchmark instances.

相關內容

《普適與移動計算期刊》(PMC)是一本高影響力、同行評議的技術期刊,它發表了高質量的科學文章,涵蓋了普適與移動計算和系統的所有方面。官網鏈接: · CASE · 泛函 · 講稿 · 論文 ·
2024 年 2 月 12 日

At STOC 2002, Eiter, Gottlob, and Makino presented a technique called ordered generation that yields an $n^{O(d)}$-delay algorithm listing all minimal transversals of an $n$-vertex hypergraph of degeneracy $d$. Recently at IWOCA 2019, Conte, Kant\'e, Marino, and Uno asked whether this XP-delay algorithm parameterized by $d$ could be made FPT-delay for a weaker notion of degeneracy, or even parameterized by the maximum degree $\Delta$, i.e., whether it can be turned into an algorithm with delay $f(\Delta)\cdot n^{O(1)}$ for some computable function $f$. Moreover, and as a first step toward answering that question, they note that they could not achieve these time bounds even for the particular case of minimal dominating sets enumeration. In this paper, using ordered generation, we show that an FPT-delay algorithm can be devised for minimal transversals enumeration parameterized by the maximum degree and dimension, giving a positive and more general answer to the latter question.

Given polynomials $g$ and $f_1,\dots,f_p$, all in $\Bbbk[x_1,\dots,x_n]$ for some field $\Bbbk$, we consider the problem of computing the critical points of the restriction of $g$ to the variety defined by $f_1=\cdots=f_p=0$. These are defined by the simultaneous vanishing of the $f_i$'s and all maximal minors of the Jacobian matrix associated to $(g,f_1, \ldots, f_p)$. We use the Eagon-Northcott complex associated to the ideal generated by these maximal minors to gain insight into the syzygy module of the system defining these critical points. We devise new $F_5$-type criteria to predict and avoid more reductions to zero when computing a Gr\"obner basis for the defining system of this critical locus. We give a bound for the arithmetic complexity of this enhanced $F_5$ algorithm and compare it to the best previously known bound for computing critical points using Gr\"obner bases.

In 2012 Chen and Singer introduced the notion of discrete residues for rational functions as a complete obstruction to rational summability. More explicitly, for a given rational function f(x), there exists a rational function g(x) such that f(x) = g(x+1) - g(x) if and only if every discrete residue of f(x) is zero. Discrete residues have many important further applications beyond summability: to creative telescoping problems, thence to the determination of (differential-)algebraic relations among hypergeometric sequences, and subsequently to the computation of (differential) Galois groups of difference equations. However, the discrete residues of a rational function are defined in terms of its complete partial fraction decomposition, which makes their direct computation impractical due to the high complexity of completely factoring arbitrary denominator polynomials into linear factors. We develop a factorization-free algorithm to compute discrete residues of rational functions, relying only on gcd computations and linear algebra.

This paper introduces a collection of scaling methods for generating $2N$-point DCT-II approximations based on $N$-point low-complexity transformations. Such scaling is based on the Hou recursive matrix factorization of the exact $2N$-point DCT-II matrix. Encompassing the widely employed Jridi-Alfalou-Meher scaling method, the proposed techniques are shown to produce DCT-II approximations that outperform the transforms resulting from the JAM scaling method according to total error energy and mean squared error. Orthogonality conditions are derived and an extensive error analysis based on statistical simulation demonstrates the good performance of the introduced scaling methods. A hardware implementation is also provided demonstrating the competitiveness of the proposed methods when compared to the JAM scaling method.

The proper conflict-free chromatic number, $\chi_{pcf}(G)$, of a graph $G$ is the least $k$ such that $G$ has a proper $k$-coloring in which for each non-isolated vertex there is a color appearing exactly once among its neighbors. The proper odd chromatic number, $\chi_{o}(G)$, of $G$ is the least $k$ such that $G$ has a proper coloring in which for every non-isolated vertex there is a color appearing an odd number of times among its neighbors. We say that a graph class $\mathcal{G}$ is $\chi_{pcf}$-bounded ($\chi_{o}$-bounded) if there is a function $f$ such that $\chi_{pcf}(G) \leq f(\chi(G))$ ($\chi_{o}(G) \leq f(\chi(G))$) for every $G \in \mathcal{G}$. Caro et al. (2022) asked for classes that are linearly $\chi_{pcf}$-bounded ($\chi_{pcf}$-bounded), and as a starting point, they showed that every claw-free graph $G$ satisfies $\chi_{pcf}(G) \le 2\Delta(G)+1$, which implies $\chi_{pcf}(G) \le 4\chi(G)+1$. In this paper, we improve the bound for claw-free graphs to a nearly tight bound by showing that such a graph $G$ satisfies $\chi_{pcf}(G) \le \Delta(G)+6$, and even $\chi_{pcf}(G) \le \Delta(G)+4$ if it is a quasi-line graph. These results also give evidence for a conjecture by Caro et al. Moreover, we show that convex-round graphs and permutation graphs are linearly $\chi_{pcf}$-bounded. For these last two results, we prove a lemma that reduces the problem of deciding if a hereditary class is linearly $\chi_{pcf}$-bounded to deciding if the bipartite graphs in the class are $\chi_{pcf}$-bounded by an absolute constant. This lemma complements a theorem of Liu (2022) and motivates us to study boundedness in bipartite graphs. In particular, we show that biconvex bipartite graphs are $\chi_{pcf}$-bounded while convex bipartite graphs are not even $\chi_o$-bounded, and exhibit a class of bipartite circle graphs that is linearly $\chi_o$-bounded but not $\chi_{pcf}$-bounded.

We propose a novel neural network architecture based on conformer transducer that adds contextual information flow to the ASR systems. Our method improves the accuracy of recognizing uncommon words while not harming the word error rate of regular words. We explore the uncommon words accuracy improvement when we use the new model and/or shallow fusion with context language model. We found that combination of both provides cumulative gain in uncommon words recognition accuracy.

We focus on the fundamental mathematical structure of score-based generative models (SGMs). We first formulate SGMs in terms of the Wasserstein proximal operator (WPO) and demonstrate that, via mean-field games (MFGs), the WPO formulation reveals mathematical structure that describes the inductive bias of diffusion and score-based models. In particular, MFGs yield optimality conditions in the form of a pair of coupled partial differential equations: a forward-controlled Fokker-Planck (FP) equation, and a backward Hamilton-Jacobi-Bellman (HJB) equation. Via a Cole-Hopf transformation and taking advantage of the fact that the cross-entropy can be related to a linear functional of the density, we show that the HJB equation is an uncontrolled FP equation. Second, with the mathematical structure at hand, we present an interpretable kernel-based model for the score function which dramatically improves the performance of SGMs in terms of training samples and training time. In addition, the WPO-informed kernel model is explicitly constructed to avoid the recently studied memorization effects of score-based generative models. The mathematical form of the new kernel-based models in combination with the use of the terminal condition of the MFG reveals new explanations for the manifold learning and generalization properties of SGMs, and provides a resolution to their memorization effects. Finally, our mathematically informed, interpretable kernel-based model suggests new scalable bespoke neural network architectures for high-dimensional applications.

Given a graph~$G$, the domination number, denoted by~$\gamma(G)$, is the minimum cardinality of a dominating set in~$G$. Dual to the notion of domination number is the packing number of a graph. A packing of~$G$ is a set of vertices whose pairwise distance is at least three. The packing number~$\rho(G)$ of~$G$ is the maximum cardinality of one such set. Furthermore, the inequality~$\rho(G) \leq \gamma(G)$ is well-known. Henning et al.\ conjectured that~$\gamma(G) \leq 2\rho(G)+1$ if~$G$ is subcubic. In this paper, we progress towards this conjecture by showing that~${\gamma(G) \leq \frac{120}{49}\rho(G)}$ if~$G$ is a bipartite cubic graph. We also show that $\gamma(G) \leq 3\rho(G)$ if~$G$ is a maximal outerplanar graph, and that~$\gamma(G) \leq 2\rho(G)$ if~$G$ is a biconvex graph. Moreover, in the last case, we show that this upper bound is tight.

Classical Krylov subspace projection methods for the solution of linear problem $Ax = b$ output an approximate solution $\widetilde{x}\simeq x$. Recently, it has been recognized that projection methods can be understood from a statistical perspective. These probabilistic projection methods return a distribution $p(\widetilde{x})$ in place of a point estimate $\widetilde{x}$. The resulting uncertainty, codified as a distribution, can, in theory, be meaningfully combined with other uncertainties, can be propagated through computational pipelines, and can be used in the framework of probabilistic decision theory. The problem we address is that the current probabilistic projection methods lead to the poorly calibrated posterior distribution. We improve the covariance matrix from previous works in a way that it does not contain such undesirable objects as $A^{-1}$ or $A^{-1}A^{-T}$, results in nontrivial uncertainty, and reproduces an arbitrary projection method as a mean of the posterior distribution. We also propose a variant that is numerically inexpensive in the case the uncertainty is calibrated a priori. Since it usually is not, we put forward a practical way to calibrate uncertainty that performs reasonably well, albeit at the expense of roughly doubling the numerical cost of the underlying projection method.

The present work presents a stable POD-Galerkin based reduced-order model (ROM) for two-dimensional Rayleigh-B\'enard convection in a square geometry for three Rayleigh numbers: $10^4$ (steady state), $3\times 10^5$ (periodic), and $6 \times 10^6$ (chaotic). Stability is obtained through a particular (staggered-grid) full-order model (FOM) discretization that leads to a ROM that is pressure-free and has skew-symmetric (energy-conserving) convective terms. This yields long-time stable solutions without requiring stabilizing mechanisms, even outside the training data range. The ROM's stability is validated for the different test cases by investigating the Nusselt and Reynolds number time series and the mean and variance of the vertical temperature profile. In general, these quantities converge to the FOM when increasing the number of modes, and turn out to be a good measure of accuracy. However, for the chaotic case, convergence with increasing numbers of modes is relatively difficult and a high number of modes is required to resolve the low-energy structures that are important for the global dynamics.

北京阿比特科技有限公司