We propose a new approach for propagating stable probability distributions through neural networks. Our method is based on local linearization, which we show to be an optimal approximation in terms of total variation distance for the ReLU non-linearity. This allows propagating Gaussian and Cauchy input uncertainties through neural networks to quantify their output uncertainties. To demonstrate the utility of propagating distributions, we apply the proposed method to predicting calibrated confidence intervals and selective prediction on out-of-distribution data. The results demonstrate a broad applicability of propagating distributions and show the advantages of our method over other approaches such as moment matching.
Hypercomplex neural networks are gaining increasing interest in the deep learning community. The attention directed towards hypercomplex models originates from several aspects, spanning from purely theoretical and mathematical characteristics to the practical advantage of lightweight models over conventional networks, and their unique properties to capture both global and local relations. In particular, a branch of these architectures, parameterized hypercomplex neural networks (PHNNs), has also gained popularity due to their versatility across a multitude of application domains. Nonetheless, only few attempts have been made to explain or interpret their intricacies. In this paper, we propose inherently interpretable PHNNs and quaternion-like networks, thus without the need for any post-hoc method. To achieve this, we define a type of cosine-similarity transform within the parameterized hypercomplex domain. This PHB-cos transform induces weight alignment with relevant input features and allows to reduce the model into a single linear transform, rendering it directly interpretable. In this work, we start to draw insights into how this unique branch of neural models operates. We observe that hypercomplex networks exhibit a tendency to concentrate on the shape around the main object of interest, in addition to the shape of the object itself. We provide a thorough analysis, studying single neurons of different layers and comparing them against how real-valued networks learn. The code of the paper is available at //github.com/ispamm/HxAI.
The control of traffic signals is crucial for improving transportation efficiency. Recently, learning-based methods, especially Deep Reinforcement Learning (DRL), garnered substantial success in the quest for more efficient traffic signal control strategies. However, the design of rewards in DRL highly demands domain knowledge to converge to an effective policy, and the final policy also presents difficulties in terms of explainability. In this work, a new learning-based method for signal control in complex intersections is proposed. In our approach, we design a concept of phase urgency for each signal phase. During signal transitions, the traffic light control strategy selects the next phase to be activated based on the phase urgency. We then proposed to represent the urgency function as an explainable tree structure. The urgency function can calculate the phase urgency for a specific phase based on the current road conditions. Genetic programming is adopted to perform gradient-free optimization of the urgency function. We test our algorithm on multiple public traffic signal control datasets. The experimental results indicate that the tree-shaped urgency function evolved by genetic programming outperforms the baselines, including a state-of-the-art method in the transportation field and a well-known DRL-based method.
Bayesian methods, distributionally robust optimization methods, and regularization methods are three pillars of trustworthy machine learning combating distributional uncertainty, e.g., the uncertainty of an empirical distribution compared to the true underlying distribution. This paper investigates the connections among the three frameworks and, in particular, explores why these frameworks tend to have smaller generalization errors. Specifically, first, we suggest a quantitative definition for "distributional robustness", propose the concept of "robustness measure", and formalize several philosophical concepts in distributionally robust optimization. Second, we show that Bayesian methods are distributionally robust in the probably approximately correct (PAC) sense; in addition, by constructing a Dirichlet-process-like prior in Bayesian nonparametrics, it can be proven that any regularized empirical risk minimization method is equivalent to a Bayesian method. Third, we show that generalization errors of machine learning models can be characterized using the distributional uncertainty of the nominal distribution and the robustness measures of these machine learning models, which is a new perspective to bound generalization errors, and therefore, explain the reason why distributionally robust machine learning models, Bayesian models, and regularization models tend to have smaller generalization errors in a unified manner.
Point processes are finding growing applications in numerous fields, such as neuroscience, high frequency finance and social media. So classic problems of classification and clustering are of increasing interest. However, analytic study of misclassification error probability in multi-class classification has barely begun. In this paper, we tackle the multi-class likelihood classification problem for point processes and develop, for the first time, both asymptotic upper and lower bounds on the error rate in terms of computable pair-wise affinities. We apply these general results to classifying renewal processes. Under some technical conditions, we show that the bounds have exponential decay and give explicit associated constants. The results are illustrated with a non-trivial simulation.
In many scenarios, especially biomedical applications, the correct delineation of complex fine-scaled structures such as neurons, tissues, and vessels is critical for downstream analysis. Despite the strong predictive power of deep learning methods, they do not provide a satisfactory representation of these structures, thus creating significant barriers in scalable annotation and downstream analysis. In this dissertation, we tackle such challenges by proposing novel representations of these topological structures in a deep learning framework. We leverage the mathematical tools from topological data analysis, i.e., persistent homology and discrete Morse theory, to develop principled methods for better segmentation and uncertainty estimation, which will become powerful tools for scalable annotation.
Effective coordination is crucial for motion control with reinforcement learning, especially as the complexity of agents and their motions increases. However, many existing methods struggle to account for the intricate dependencies between joints. We introduce CoordiGraph, a novel architecture that leverages subequivariant principles from physics to enhance coordination of motion control with reinforcement learning. This method embeds the principles of equivariance as inherent patterns in the learning process under gravity influence, which aids in modeling the nuanced relationships between joints vital for motion control. Through extensive experimentation with sophisticated agents in diverse environments, we highlight the merits of our approach. Compared to current leading methods, CoordiGraph notably enhances generalization and sample efficiency.
The adaptive processing of structured data is a long-standing research topic in machine learning that investigates how to automatically learn a mapping from a structured input to outputs of various nature. Recently, there has been an increasing interest in the adaptive processing of graphs, which led to the development of different neural network-based methodologies. In this thesis, we take a different route and develop a Bayesian Deep Learning framework for graph learning. The dissertation begins with a review of the principles over which most of the methods in the field are built, followed by a study on graph classification reproducibility issues. We then proceed to bridge the basic ideas of deep learning for graphs with the Bayesian world, by building our deep architectures in an incremental fashion. This framework allows us to consider graphs with discrete and continuous edge features, producing unsupervised embeddings rich enough to reach the state of the art on several classification tasks. Our approach is also amenable to a Bayesian nonparametric extension that automatizes the choice of almost all model's hyper-parameters. Two real-world applications demonstrate the efficacy of deep learning for graphs. The first concerns the prediction of information-theoretic quantities for molecular simulations with supervised neural models. After that, we exploit our Bayesian models to solve a malware-classification task while being robust to intra-procedural code obfuscation techniques. We conclude the dissertation with an attempt to blend the best of the neural and Bayesian worlds together. The resulting hybrid model is able to predict multimodal distributions conditioned on input graphs, with the consequent ability to model stochasticity and uncertainty better than most works. Overall, we aim to provide a Bayesian perspective into the articulated research field of deep learning for graphs.
The Bayesian paradigm has the potential to solve core issues of deep neural networks such as poor calibration and data inefficiency. Alas, scaling Bayesian inference to large weight spaces often requires restrictive approximations. In this work, we show that it suffices to perform inference over a small subset of model weights in order to obtain accurate predictive posteriors. The other weights are kept as point estimates. This subnetwork inference framework enables us to use expressive, otherwise intractable, posterior approximations over such subsets. In particular, we implement subnetwork linearized Laplace: We first obtain a MAP estimate of all weights and then infer a full-covariance Gaussian posterior over a subnetwork. We propose a subnetwork selection strategy that aims to maximally preserve the model's predictive uncertainty. Empirically, our approach is effective compared to ensembles and less expressive posterior approximations over full networks.
This paper proposes a method to modify traditional convolutional neural networks (CNNs) into interpretable CNNs, in order to clarify knowledge representations in high conv-layers of CNNs. In an interpretable CNN, each filter in a high conv-layer represents a certain object part. We do not need any annotations of object parts or textures to supervise the learning process. Instead, the interpretable CNN automatically assigns each filter in a high conv-layer with an object part during the learning process. Our method can be applied to different types of CNNs with different structures. The clear knowledge representation in an interpretable CNN can help people understand the logics inside a CNN, i.e., based on which patterns the CNN makes the decision. Experiments showed that filters in an interpretable CNN were more semantically meaningful than those in traditional CNNs.
The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.