亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Real-time on-device continual learning applications are used on mobile phones, consumer robots, and smart appliances. Such devices have limited processing and memory storage capabilities, whereas continual learning acquires data over a long period of time. By necessity, lifelong learning algorithms have to be able to operate under such constraints while delivering good performance. This study presents the Explainable Lifelong Learning (ExLL) model, which incorporates several important traits: 1) learning to learn, in a single pass, from streaming data with scarce examples and resources; 2) a self-organizing prototype-based architecture that expands as needed and clusters streaming data into separable groups by similarity and preserves data against catastrophic forgetting; 3) an interpretable architecture to convert the clusters into explainable IF-THEN rules as well as to justify model predictions in terms of what is similar and dissimilar to the inference; and 4) inferences at the global and local level using a pairwise decision fusion process to enhance the accuracy of the inference, hence ``Glocal Pairwise Fusion.'' We compare ExLL against contemporary online learning algorithms for image recognition, using OpenLoris, F-SIOL-310, and Places datasets to evaluate several continual learning scenarios for video streams, low-sample learning, ability to scale, and imbalanced data streams. The algorithms are evaluated for their performance in accuracy, number of parameters, and experiment runtime requirements. ExLL outperforms all algorithms for accuracy in the majority of the tested scenarios.

相關內容

Self-adaptation solutions need to periodically monitor, reason about, and adapt a running system. The adaptation step involves generating an adaptation strategy and applying it to the running system whenever an anomaly arises. In this article, we argue that, rather than generating individual adaptation strategies, the goal should be to adapt the control logic of the running system in such a way that the system itself would learn how to steer clear of future anomalies, without triggering self-adaptation too frequently. While the need for adaptation is never eliminated, especially noting the uncertain and evolving environment of complex systems, reducing the frequency of adaptation interventions is advantageous for various reasons, e.g., to increase performance and to make a running system more robust. We instantiate and empirically examine the above idea for software-defined networking -- a key enabling technology for modern data centres and Internet of Things applications. Using genetic programming,(GP), we propose a self-adaptation solution that continuously learns and updates the control constructs in the data-forwarding logic of a software-defined network. Our evaluation, performed using open-source synthetic and industrial data, indicates that, compared to a baseline adaptation technique that attempts to generate individual adaptations, our GP-based approach is more effective in resolving network congestion, and further, reduces the frequency of adaptation interventions over time. In addition, we show that, for networks with the same topology, reusing over larger networks the knowledge that is learned on smaller networks leads to significant improvements in the performance of our GP-based adaptation approach. Finally, we compare our approach against a standard data-forwarding algorithm from the network literature, demonstrating that our approach significantly reduces packet loss.

The importance of preventing microarchitectural timing side channels in security-critical applications has surged in recent years. Constant-time programming has emerged as a best-practice technique for preventing the leakage of secret information through timing. It is based on the assumption that the timing of certain basic machine instructions is independent of their respective input data. However, whether or not an instruction satisfies this data-independent timing criterion varies between individual processor microarchitectures. In this paper, we propose a novel methodology to formally verify data-oblivious behavior in hardware using standard property checking techniques. The proposed methodology is based on an inductive property that enables scalability even to complex out-of-order cores. We show that proving this inductive property is sufficient to exhaustively verify data-obliviousness at the microarchitectural level. In addition, the paper discusses several techniques that can be used to make the verification process easier and faster. We demonstrate the feasibility of the proposed methodology through case studies on several open-source designs. One case study uncovered a data-dependent timing violation in the extensively verified and highly secure IBEX RISC-V core. In addition to several hardware accelerators and in-order processors, our experiments also include RISC-V BOOM, a complex out-of-order processor, highlighting the scalability of the approach.

Function-as-a-Service is a cloud computing paradigm offering an event-driven execution model to applications. It features serverless attributes by eliminating resource management responsibilities from developers and offers transparent and on-demand scalability of applications. Typical serverless applications have stringent response time and scalability requirements and therefore rely on deployed services to provide quick and fault-tolerant feedback to clients. However, the FaaS paradigm suffers from cold starts as there is a non-negligible delay associated with on-demand function initialization. This work focuses on reducing the frequency of cold starts on the platform by using Reinforcement Learning. Our approach uses Q-learning and considers metrics such as function CPU utilization, existing function instances, and response failure rate to proactively initialize functions in advance based on the expected demand. The proposed solution was implemented on Kubeless and was evaluated using a normalised real-world function demand trace with matrix multiplication as the workload. The results demonstrate a favourable performance of the RL-based agent when compared to Kubeless' default policy and function keep-alive policy by improving throughput by up to 8.81% and reducing computation load and resource wastage by up to 55% and 37%, respectively, which is a direct outcome of reduced cold starts.

Virtual reality (VR) platforms enable a wide range of applications, however pose unique privacy risks. In particular, VR devices are equipped with a rich set of sensors that collect personal and sensitive information (e.g., body motion, eye gaze, hand joints, and facial expression), which can be used to uniquely identify a user, even without explicit identifiers. In this paper, we are interested in understanding the extent to which a user can be identified based on data collected by different VR sensors. We consider adversaries with capabilities that range from observing APIs available within a single VR app (app adversary) to observing all, or selected, sensor measurements across all apps on the VR device (device adversary). To that end, we introduce BEHAVR, a framework for collecting and analyzing data from all sensor groups collected by all apps running on a VR device. We use BEHAVR to perform a user study and collect data from real users that interact with popular real-world apps. We use that data to build machine learning models for user identification, with features extracted from sensor data available within and across apps. We show that these models can identify users with an accuracy of up to 100%, and we reveal the most important features and sensor groups, depending on the functionality of the app and the strength of the adversary, as well as the minimum time needed for user identification. To the best of our knowledge, BEHAVR is the first to analyze user identification in VR comprehensively, i.e., considering jointly all sensor measurements available on a VR device (whether within an app or across multiple apps), collected by real-world, as opposed to custom-made, apps.

Recent advances in machine learning and AI, including Generative AI and LLMs, are disrupting technological innovation, product development, and society as a whole. AI's contribution to technology can come from multiple approaches that require access to large training data sets and clear performance evaluation criteria, ranging from pattern recognition and classification to generative models. Yet, AI has contributed less to fundamental science in part because large data sets of high-quality data for scientific practice and model discovery are more difficult to access. Generative AI, in general, and Large Language Models in particular, may represent an opportunity to augment and accelerate the scientific discovery of fundamental deep science with quantitative models. Here we explore and investigate aspects of an AI-driven, automated, closed-loop approach to scientific discovery, including self-driven hypothesis generation and open-ended autonomous exploration of the hypothesis space. Integrating AI-driven automation into the practice of science would mitigate current problems, including the replication of findings, systematic production of data, and ultimately democratisation of the scientific process. Realising these possibilities requires a vision for augmented AI coupled with a diversity of AI approaches able to deal with fundamental aspects of causality analysis and model discovery while enabling unbiased search across the space of putative explanations. These advances hold the promise to unleash AI's potential for searching and discovering the fundamental structure of our world beyond what human scientists have been able to achieve. Such a vision would push the boundaries of new fundamental science rather than automatize current workflows and instead open doors for technological innovation to tackle some of the greatest challenges facing humanity today.

Edge-device co-inference refers to deploying well-trained artificial intelligent (AI) models at the network edge under the cooperation of devices and edge servers for providing ambient intelligent services. For enhancing the utilization of limited network resources in edge-device co-inference tasks from a systematic view, we propose a task-oriented scheme of integrated sensing, computation and communication (ISCC) in this work. In this system, all devices sense a target from the same wide view to obtain homogeneous noise-corrupted sensory data, from which the local feature vectors are extracted. All local feature vectors are aggregated at the server using over-the-air computation (AirComp) in a broadband channel with the orthogonal-frequency-division-multiplexing technique for suppressing the sensing and channel noise. The aggregated denoised global feature vector is further input to a server-side AI model for completing the downstream inference task. A novel task-oriented design criterion, called maximum minimum pair-wise discriminant gain, is adopted for classification tasks. It extends the distance of the closest class pair in the feature space, leading to a balanced and enhanced inference accuracy. Under this criterion, a problem of joint sensing power assignment, transmit precoding and receive beamforming is formulated. The challenge lies in three aspects: the coupling between sensing and AirComp, the joint optimization of all feature dimensions' AirComp aggregation over a broadband channel, and the complicated form of the maximum minimum pair-wise discriminant gain. To solve this problem, a task-oriented ISCC scheme with AirComp is proposed. Experiments based on a human motion recognition task are conducted to verify the advantages of the proposed scheme over the existing scheme and a baseline.

Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.

We present a large-scale study on unsupervised spatiotemporal representation learning from videos. With a unified perspective on four recent image-based frameworks, we study a simple objective that can easily generalize all these methods to space-time. Our objective encourages temporally-persistent features in the same video, and in spite of its simplicity, it works surprisingly well across: (i) different unsupervised frameworks, (ii) pre-training datasets, (iii) downstream datasets, and (iv) backbone architectures. We draw a series of intriguing observations from this study, e.g., we discover that encouraging long-spanned persistency can be effective even if the timespan is 60 seconds. In addition to state-of-the-art results in multiple benchmarks, we report a few promising cases in which unsupervised pre-training can outperform its supervised counterpart. Code is made available at //github.com/facebookresearch/SlowFast

Search engine has become a fundamental component in various web and mobile applications. Retrieving relevant documents from the massive datasets is challenging for a search engine system, especially when faced with verbose or tail queries. In this paper, we explore a vector space search framework for document retrieval. Specifically, we trained a deep semantic matching model so that each query and document can be encoded as a low dimensional embedding. Our model was trained based on BERT architecture. We deployed a fast k-nearest-neighbor index service for online serving. Both offline and online metrics demonstrate that our method improved retrieval performance and search quality considerably, particularly for tail

Recent advances in sensor and mobile devices have enabled an unprecedented increase in the availability and collection of urban trajectory data, thus increasing the demand for more efficient ways to manage and analyze the data being produced. In this survey, we comprehensively review recent research trends in trajectory data management, ranging from trajectory pre-processing, storage, common trajectory analytic tools, such as querying spatial-only and spatial-textual trajectory data, and trajectory clustering. We also explore four closely related analytical tasks commonly used with trajectory data in interactive or real-time processing. Deep trajectory learning is also reviewed for the first time. Finally, we outline the essential qualities that a trajectory management system should possess in order to maximize flexibility.

北京阿比特科技有限公司