亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Tabular data is the most widely used data format in machine learning (ML). While tree-based methods outperform DL-based methods in supervised learning, recent literature reports that self-supervised learning with Transformer-based models outperforms tree-based methods. In the existing literature on self-supervised learning for tabular data, contrastive learning is the predominant method. In contrastive learning, data augmentation is important to generate different views. However, data augmentation for tabular data has been difficult due to the unique structure and high complexity of tabular data. In addition, three main components are proposed together in existing methods: model structure, self-supervised learning methods, and data augmentation. Therefore, previous works have compared the performance without comprehensively considering these components, and it is not clear how each component affects the actual performance. In this study, we focus on data augmentation to address these issues. We propose a novel data augmentation method, $\textbf{M}$ask $\textbf{T}$oken $\textbf{R}$eplacement ($\texttt{MTR}$), which replaces the mask token with a portion of each tokenized column; $\texttt{MTR}$ takes advantage of the properties of Transformer, which is becoming the predominant DL-based architecture for tabular data, to perform data augmentation for each column embedding. Through experiments with 13 diverse public datasets in both supervised and self-supervised learning scenarios, we show that $\texttt{MTR}$ achieves competitive performance against existing data augmentation methods and improves model performance. In addition, we discuss specific scenarios in which $\texttt{MTR}$ is most effective and identify the scope of its application. The code is available at //github.com/somaonishi/MTR/.

相關內容

數據增強在機器學習領域多指采用一些方法(比如數據蒸餾,正負樣本均衡等)來提高模型數據集的質量,增強數據。

While federated learning (FL) promises to preserve privacy, recent works in the image and text domains have shown that training updates leak private client data. However, most high-stakes applications of FL (e.g., in healthcare and finance) use tabular data, where the risk of data leakage has not yet been explored. A successful attack for tabular data must address two key challenges unique to the domain: (i) obtaining a solution to a high-variance mixed discrete-continuous optimization problem, and (ii) enabling human assessment of the reconstruction as unlike for image and text data, direct human inspection is not possible. In this work we address these challenges and propose TabLeak, the first comprehensive reconstruction attack on tabular data. TabLeak is based on two key contributions: (i) a method which leverages a softmax relaxation and pooled ensembling to solve the optimization problem, and (ii) an entropy-based uncertainty quantification scheme to enable human assessment. We evaluate TabLeak on four tabular datasets for both FedSGD and FedAvg training protocols, and show that it successfully breaks several settings previously deemed safe. For instance, we extract large subsets of private data at >90% accuracy even at the large batch size of 128. Our findings demonstrate that current high-stakes tabular FL is excessively vulnerable to leakage attacks.

Data augmentation is a widely used technique in machine learning to improve model performance. However, existing data augmentation techniques in natural language understanding (NLU) may not fully capture the complexity of natural language variations, and they can be challenging to apply to large datasets. This paper proposes the Random Position Noise (RPN) algorithm, a novel data augmentation technique that operates at the word vector level. RPN modifies the word embeddings of the original text by introducing noise based on the existing values of selected word vectors, allowing for more fine-grained modifications and better capturing natural language variations. Unlike traditional data augmentation methods, RPN does not require gradients in the computational graph during virtual sample updates, making it simpler to apply to large datasets. Experimental results demonstrate that RPN consistently outperforms existing data augmentation techniques across various NLU tasks, including sentiment analysis, natural language inference, and paraphrase detection. Moreover, RPN performs well in low-resource settings and is applicable to any model featuring a word embeddings layer. The proposed RPN algorithm is a promising approach for enhancing NLU performance and addressing the challenges associated with traditional data augmentation techniques in large-scale NLU tasks. Our experimental results demonstrated that the RPN algorithm achieved state-of-the-art performance in all seven NLU tasks, thereby highlighting its effectiveness and potential for real-world NLU applications.

All industries are trying to leverage Artificial Intelligence (AI) based on their existing big data which is available in so called tabular form, where each record is composed of a number of heterogeneous continuous and categorical columns also known as features. Deep Learning (DL) has constituted a major breakthrough for AI in fields related to human skills like natural language processing, but its applicability to tabular data has been more challenging. More classical Machine Learning (ML) models like tree-based ensemble ones usually perform better. This paper presents a novel DL model using Graph Neural Network (GNN) more specifically Interaction Network (IN), for contextual embedding and modelling interactions among tabular features. Its results outperform those of a recently published survey with DL benchmark based on five public datasets, also achieving competitive results when compared to boosted-tree solutions.

Entity resolution (ER) is the process of identifying records that refer to the same entities within one or across multiple databases. Numerous techniques have been developed to tackle ER challenges over the years, with recent emphasis placed on machine and deep learning methods for the matching phase. However, the quality of the benchmark datasets typically used in the experimental evaluations of learning-based matching algorithms has not been examined in the literature. To cover this gap, we propose four different approaches to assessing the difficulty and appropriateness of 13 established datasets: two theoretical approaches, which involve new measures of linearity and existing measures of complexity, and two practical approaches: the difference between the best non-linear and linear matchers, as well as the difference between the best learning-based matcher and the perfect oracle. Our analysis demonstrates that most of the popular datasets pose rather easy classification tasks. As a result, they are not suitable for properly evaluating learning-based matching algorithms. To address this issue, we propose a new methodology for yielding benchmark datasets. We put it into practice by creating four new matching tasks, and we verify that these new benchmarks are more challenging and therefore more suitable for further advancements in the field.

What matters for contrastive learning? We argue that contrastive learning heavily relies on informative features, or "hard" (positive or negative) features. Early works include more informative features by applying complex data augmentations and large batch size or memory bank, and recent works design elaborate sampling approaches to explore informative features. The key challenge toward exploring such features is that the source multi-view data is generated by applying random data augmentations, making it infeasible to always add useful information in the augmented data. Consequently, the informativeness of features learned from such augmented data is limited. In response, we propose to directly augment the features in latent space, thereby learning discriminative representations without a large amount of input data. We perform a meta learning technique to build the augmentation generator that updates its network parameters by considering the performance of the encoder. However, insufficient input data may lead the encoder to learn collapsed features and therefore malfunction the augmentation generator. A new margin-injected regularization is further added in the objective function to avoid the encoder learning a degenerate mapping. To contrast all features in one gradient back-propagation step, we adopt the proposed optimization-driven unified contrastive loss instead of the conventional contrastive loss. Empirically, our method achieves state-of-the-art results on several benchmark datasets.

Owing to effective and flexible data acquisition, unmanned aerial vehicle (UAV) has recently become a hotspot across the fields of computer vision (CV) and remote sensing (RS). Inspired by recent success of deep learning (DL), many advanced object detection and tracking approaches have been widely applied to various UAV-related tasks, such as environmental monitoring, precision agriculture, traffic management. This paper provides a comprehensive survey on the research progress and prospects of DL-based UAV object detection and tracking methods. More specifically, we first outline the challenges, statistics of existing methods, and provide solutions from the perspectives of DL-based models in three research topics: object detection from the image, object detection from the video, and object tracking from the video. Open datasets related to UAV-dominated object detection and tracking are exhausted, and four benchmark datasets are employed for performance evaluation using some state-of-the-art methods. Finally, prospects and considerations for the future work are discussed and summarized. It is expected that this survey can facilitate those researchers who come from remote sensing field with an overview of DL-based UAV object detection and tracking methods, along with some thoughts on their further developments.

Since hardware resources are limited, the objective of training deep learning models is typically to maximize accuracy subject to the time and memory constraints of training and inference. We study the impact of model size in this setting, focusing on Transformer models for NLP tasks that are limited by compute: self-supervised pretraining and high-resource machine translation. We first show that even though smaller Transformer models execute faster per iteration, wider and deeper models converge in significantly fewer steps. Moreover, this acceleration in convergence typically outpaces the additional computational overhead of using larger models. Therefore, the most compute-efficient training strategy is to counterintuitively train extremely large models but stop after a small number of iterations. This leads to an apparent trade-off between the training efficiency of large Transformer models and the inference efficiency of small Transformer models. However, we show that large models are more robust to compression techniques such as quantization and pruning than small models. Consequently, one can get the best of both worlds: heavily compressed, large models achieve higher accuracy than lightly compressed, small models.

Graph convolutional neural networks have recently shown great potential for the task of zero-shot learning. These models are highly sample efficient as related concepts in the graph structure share statistical strength allowing generalization to new classes when faced with a lack of data. However, multi-layer architectures, which are required to propagate knowledge to distant nodes in the graph, dilute the knowledge by performing extensive Laplacian smoothing at each layer and thereby consequently decrease performance. In order to still enjoy the benefit brought by the graph structure while preventing dilution of knowledge from distant nodes, we propose a Dense Graph Propagation (DGP) module with carefully designed direct links among distant nodes. DGP allows us to exploit the hierarchical graph structure of the knowledge graph through additional connections. These connections are added based on a node's relationship to its ancestors and descendants. A weighting scheme is further used to weigh their contribution depending on the distance to the node to improve information propagation in the graph. Combined with finetuning of the representations in a two-stage training approach our method outperforms state-of-the-art zero-shot learning approaches.

Collaborative filtering often suffers from sparsity and cold start problems in real recommendation scenarios, therefore, researchers and engineers usually use side information to address the issues and improve the performance of recommender systems. In this paper, we consider knowledge graphs as the source of side information. We propose MKR, a Multi-task feature learning approach for Knowledge graph enhanced Recommendation. MKR is a deep end-to-end framework that utilizes knowledge graph embedding task to assist recommendation task. The two tasks are associated by cross&compress units, which automatically share latent features and learn high-order interactions between items in recommender systems and entities in the knowledge graph. We prove that cross&compress units have sufficient capability of polynomial approximation, and show that MKR is a generalized framework over several representative methods of recommender systems and multi-task learning. Through extensive experiments on real-world datasets, we demonstrate that MKR achieves substantial gains in movie, book, music, and news recommendation, over state-of-the-art baselines. MKR is also shown to be able to maintain a decent performance even if user-item interactions are sparse.

Online news recommender systems aim to address the information explosion of news and make personalized recommendation for users. In general, news language is highly condensed, full of knowledge entities and common sense. However, existing methods are unaware of such external knowledge and cannot fully discover latent knowledge-level connections among news. The recommended results for a user are consequently limited to simple patterns and cannot be extended reasonably. Moreover, news recommendation also faces the challenges of high time-sensitivity of news and dynamic diversity of users' interests. To solve the above problems, in this paper, we propose a deep knowledge-aware network (DKN) that incorporates knowledge graph representation into news recommendation. DKN is a content-based deep recommendation framework for click-through rate prediction. The key component of DKN is a multi-channel and word-entity-aligned knowledge-aware convolutional neural network (KCNN) that fuses semantic-level and knowledge-level representations of news. KCNN treats words and entities as multiple channels, and explicitly keeps their alignment relationship during convolution. In addition, to address users' diverse interests, we also design an attention module in DKN to dynamically aggregate a user's history with respect to current candidate news. Through extensive experiments on a real online news platform, we demonstrate that DKN achieves substantial gains over state-of-the-art deep recommendation models. We also validate the efficacy of the usage of knowledge in DKN.

北京阿比特科技有限公司