With the fast and unstoppable evolution of robotics and artificial intelligence, effective autonomous navigation in real-world scenarios has become one of the most pressing challenges in the literature. However, demanding requirements, such as real-time operation, energy and computational efficiency, robustness, and reliability, make most current solutions unsuitable for real-world challenges. Thus, researchers are forced to seek innovative approaches, such as bio-inspired solutions. Indeed, animals have the intrinsic ability to efficiently perceive, understand, and navigate their unstructured surroundings. To do so, they exploit self-motion cues, proprioception, and visual flow in a cognitive process to map their environment and locate themselves within it. Computational neuroscientists aim to answer ''how'' and ''why'' such cognitive processes occur in the brain, to design novel neuromorphic sensors and methods that imitate biological processing. This survey aims to comprehensively review the application of brain-inspired strategies to autonomous navigation, considering: neuromorphic perception and asynchronous event processing, energy-efficient and adaptive learning, or the imitation of the working principles of brain areas that play a crucial role in navigation such as the hippocampus or the entorhinal cortex.
The aim of surface defect detection is to identify and localise abnormal regions on the surfaces of captured objects, a task that's increasingly demanded across various industries. Current approaches frequently fail to fulfil the extensive demands of these industries, which encompass high performance, consistency, and fast operation, along with the capacity to leverage the entirety of the available training data. Addressing these gaps, we introduce SuperSimpleNet, an innovative discriminative model that evolved from SimpleNet. This advanced model significantly enhances its predecessor's training consistency, inference time, as well as detection performance. SuperSimpleNet operates in an unsupervised manner using only normal training images but also benefits from labelled abnormal training images when they are available. SuperSimpleNet achieves state-of-the-art results in both the supervised and the unsupervised settings, as demonstrated by experiments across four challenging benchmark datasets. Code: //github.com/blaz-r/SuperSimpleNet .
As the world increasingly relies on mathematical models for forecasts in different areas, effective communication of uncertainty in time series predictions is important for informed decision making. This study explores how users estimate probabilistic uncertainty in time series predictions under different variants of line charts depicting uncertainty. It examines the role of individual characteristics and the influence of user-reported metrics on uncertainty estimations. By addressing these aspects, this paper aims to enhance the understanding of uncertainty visualization and for improving communication in time series forecast visualizations and the design of prediction data dashboards.As the world increasingly relies on mathematical models for forecasts in different areas, effective communication of uncertainty in time series predictions is important for informed decision making. This study explores how users estimate probabilistic uncertainty in time series predictions under different variants of line charts depicting uncertainty. It examines the role of individual characteristics and the influence of user-reported metrics on uncertainty estimations. By addressing these aspects, this paper aims to enhance the understanding of uncertainty visualization and for improving communication in time series forecast visualizations and the design of prediction data dashboards.
The vast and complicated large-qubit state space forbids us to comprehensively capture the dynamics of modern quantum computers via classical simulations or quantum tomography. However, recent progress in quantum learning theory invokes a crucial question: given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties using new classical inputs, after learning from data obtained by incoherently measuring states generated by the same circuit but with different classical inputs? In this work, we prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d. Building upon these derived complexity bounds, we further harness the concept of classical shadow and truncated trigonometric expansion to devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to polynomial scaling in many practical settings. Our results advance two crucial realms in quantum computation: the exploration of quantum algorithms with practical utilities and learning-based quantum system certification. We conduct numerical simulations to validate our proposals across diverse scenarios, encompassing quantum information processing protocols, Hamiltonian simulation, and variational quantum algorithms up to 60 qubits.
Accurate lane detection is essential for effective path planning and lane following in autonomous driving, especially in scenarios with significant occlusion from vehicles and pedestrians. Existing models often struggle under such conditions, leading to unreliable navigation and safety risks. We propose two innovative approaches to enhance lane detection in these challenging environments, each showing notable improvements over current methods. The first approach aug-Segment improves conventional lane detection models by augmenting the training dataset of CULanes with simulated occlusions and training a segmentation model. This method achieves a 12% improvement over a number of SOTA models on the CULanes dataset, demonstrating that enriched training data can better handle occlusions, however, since this model lacked robustness to certain settings, our main contribution is the second approach, LOID Lane Occlusion Inpainting and Detection. LOID introduces an advanced lane detection network that uses an image processing pipeline to identify and mask occlusions. It then employs inpainting models to reconstruct the road environment in the occluded areas. The enhanced image is processed by a lane detection algorithm, resulting in a 20% & 24% improvement over several SOTA models on the BDDK100 and CULanes datasets respectively, highlighting the effectiveness of this novel technique.
Model compression is a crucial part of deploying neural networks (NNs), especially when the memory and storage of computing devices are limited in many applications. This paper focuses on two model compression techniques: low-rank approximation and weight pruning in neural networks, which are very popular nowadays. However, training NN with low-rank approximation and weight pruning always suffers significant accuracy loss and convergence issues. In this paper, a holistic framework is proposed for model compression from a novel perspective of nonconvex optimization by designing an appropriate objective function. Then, we introduce NN-BCD, a block coordinate descent (BCD) algorithm to solve the nonconvex optimization. One advantage of our algorithm is that an efficient iteration scheme can be derived with closed-form, which is gradient-free. Therefore, our algorithm will not suffer from vanishing/exploding gradient problems. Furthermore, with the Kurdyka-{\L}ojasiewicz (K{\L}) property of our objective function, we show that our algorithm globally converges to a critical point at the rate of O(1/k), where k denotes the number of iterations. Lastly, extensive experiments with tensor train decomposition and weight pruning demonstrate the efficiency and superior performance of the proposed framework. Our code implementation is available at //github.com/ChenyangLi-97/NN-BCD
In the fields of computer vision and robotics, accurate pixel-level correspondences are essential for enabling advanced tasks such as structure-from-motion and simultaneous localization and mapping. Recent correspondence pruning methods usually focus on learning local consistency through k-nearest neighbors, which makes it difficult to capture robust context for each correspondence. We propose CorrAdaptor, a novel architecture that introduces a dual-branch structure capable of adaptively adjusting local contexts through both explicit and implicit local graph learning. Specifically, the explicit branch uses KNN-based graphs tailored for initial neighborhood identification, while the implicit branch leverages a learnable matrix to softly assign neighbors and adaptively expand the local context scope, significantly enhancing the model's robustness and adaptability to complex image variations. Moreover, we design a motion injection module to integrate motion consistency into the network to suppress the impact of outliers and refine local context learning, resulting in substantial performance improvements. The experimental results on extensive correspondence-based tasks indicate that our CorrAdaptor achieves state-of-the-art performance both qualitatively and quantitatively. The code and pre-trained models are available at //github.com/TaoWangzj/CorrAdaptor.
The design of satellite missions is currently undergoing a paradigm shift from the historical approach of individualised monolithic satellites towards distributed mission configurations, consisting of multiple small satellites. With a rapidly growing number of such satellites now deployed in orbit, each collecting large amounts of data, interest in on-board orbital edge computing is rising. Federated Learning is a promising distributed computing approach in this context, allowing multiple satellites to collaborate efficiently in training on-board machine learning models. Though recent works on the use of Federated Learning in orbital edge computing have focused largely on homogeneous satellite constellations, Federated Learning could also be employed to allow heterogeneous satellites to form ad-hoc collaborations, e.g. in the case of communications satellites operated by different providers. Such an application presents additional challenges to the Federated Learning paradigm, arising largely from the heterogeneity of such a system. In this position paper, we offer a systematic review of these challenges in the context of the cross-provider use case, giving a brief overview of the state-of-the-art for each, and providing an entry point for deeper exploration of each issue.
Analog front-end design heavily relies on specialized human expertise and costly trial-and-error simulations, which motivated many prior works on analog design automation. However, efficient and effective exploration of the vast and complex design space remains constrained by the time-consuming nature of SPICE simulations, making effective design automation a challenging endeavor. In this paper, we introduce INSIGHT, a GPU-powered, technology-agnostic, effective universal neural simulator in the analog front-end design automation loop. INSIGHT accurately predicts the performance metrics of analog circuits across various technologies with just a few microseconds of inference time. Notably, its autoregressive capabilities enable INSIGHT to accurately predict simulation-costly critical transient specifications leveraging less expensive performance metric information. The low cost and high fidelity feature make INSIGHT a good substitute for standard simulators in analog front-end optimization frameworks. INSIGHT is compatible with any optimization framework, facilitating enhanced design space exploration for sample efficiency through sophisticated offline learning and adaptation techniques. Our experiments demonstrate that INSIGHT-M, a model-based batch reinforcement learning sizing framework with INSIGHT as the accurate surrogate, only requires < 20 real-time simulations with 100-1000x lower simulation costs and significant speedup over existing sizing methods.
The emergent large language/multimodal models facilitate the evolution of mobile agents, especially in mobile UI task automation. However, existing evaluation approaches, which rely on human validation or established datasets to compare agent-predicted actions with predefined action sequences, are unscalable and unfaithful. To overcome these limitations, this paper presents LlamaTouch, a testbed for on-device mobile UI task execution and faithful, scalable task evaluation. By observing that the task execution process only transfers UI states, LlamaTouch employs a novel evaluation approach that only assesses whether an agent traverses all manually annotated, essential application/system states. LlamaTouch comprises three key techniques: (1) On-device task execution that enables mobile agents to interact with realistic mobile environments for task execution. (2) Fine-grained UI component annotation that merges pixel-level screenshots and textual screen hierarchies to explicitly identify and precisely annotate essential UI components with a rich set of designed annotation primitives. (3) A multi-level application state matching algorithm that utilizes exact and fuzzy matching to accurately detect critical information in each screen, even with unpredictable UI layout/content dynamics. LlamaTouch currently incorporates four mobile agents and 496 tasks, encompassing both tasks in the widely-used datasets and our self-constructed ones to cover more diverse mobile applications. Evaluation results demonstrate LlamaTouch's high faithfulness of evaluation in real-world mobile environments and its better scalability than human validation. LlamaTouch also enables easy task annotation and integration of new mobile agents. Code and dataset are publicly available at //github.com/LlamaTouch/LlamaTouch.
Over the past few years, the rapid development of deep learning technologies for computer vision has greatly promoted the performance of medical image segmentation (MedISeg). However, the recent MedISeg publications usually focus on presentations of the major contributions (e.g., network architectures, training strategies, and loss functions) while unwittingly ignoring some marginal implementation details (also known as "tricks"), leading to a potential problem of the unfair experimental result comparisons. In this paper, we collect a series of MedISeg tricks for different model implementation phases (i.e., pre-training model, data pre-processing, data augmentation, model implementation, model inference, and result post-processing), and experimentally explore the effectiveness of these tricks on the consistent baseline models. Compared to paper-driven surveys that only blandly focus on the advantages and limitation analyses of segmentation models, our work provides a large number of solid experiments and is more technically operable. With the extensive experimental results on both the representative 2D and 3D medical image datasets, we explicitly clarify the effect of these tricks. Moreover, based on the surveyed tricks, we also open-sourced a strong MedISeg repository, where each of its components has the advantage of plug-and-play. We believe that this milestone work not only completes a comprehensive and complementary survey of the state-of-the-art MedISeg approaches, but also offers a practical guide for addressing the future medical image processing challenges including but not limited to small dataset learning, class imbalance learning, multi-modality learning, and domain adaptation. The code has been released at: //github.com/hust-linyi/MedISeg