亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

With the burgeoning development in the realm of large language models (LLMs), the demand for efficient incremental training tailored to specific industries and domains continues to increase. Currently, the predominantly employed frameworks lack modular design, it often takes a lot of coding work to kickstart the training of LLM. To address this, we present "LMTuner", a highly usable, integrable, and scalable system for training LLMs expeditiously and with minimal user-input. LMTuner comprises three main modules - the Interaction, Training, and Inference Modules. We advocate that LMTuner's usability and integrality alleviate the complexities in training large language models. Remarkably, even a novice user could commence training large language models within five minutes. Furthermore, it integrates DeepSpeed frameworks and supports Efficient Fine-Tuning methodologies like Low Rank Adaptation (LoRA), Quantized LoRA (QLoRA), etc., enabling the training of language models scaling from 300M to a whopping 130B parameters using a single server. The LMTuner's homepage (//wengsyx.github.io/LMTuner/)and screencast video (//youtu.be/nsXmWOmN3rE) are now publicly available.

相關內容

Previous studies have revealed that vanilla pre-trained language models (PLMs) lack the capacity to handle knowledge-intensive NLP tasks alone; thus, several works have attempted to integrate external knowledge into PLMs. However, despite the promising outcome, we empirically observe that PLMs may have already encoded rich knowledge in their pre-trained parameters but fail to fully utilize them when applying them to knowledge-intensive tasks. In this paper, we propose a new paradigm dubbed Knowledge Rumination to help the pre-trained language model utilize that related latent knowledge without retrieving it from the external corpus. By simply adding a prompt like "As far as I know" to the PLMs, we try to review related latent knowledge and inject them back into the model for knowledge consolidation. We apply the proposed knowledge rumination to various language models, including RoBERTa, DeBERTa, and GPT-3. Experimental results on six commonsense reasoning tasks and GLUE benchmarks demonstrate the effectiveness of our proposed approach, which proves that the knowledge stored in PLMs can be better exploited to enhance performance. Code is available in //github.com/zjunlp/knowledge-rumination.

This study explores the concept of equivariance in vision-language foundation models (VLMs), focusing specifically on the multimodal similarity function that is not only the major training objective but also the core delivery to support downstream tasks. Unlike the existing image-text similarity objective which only categorizes matched pairs as similar and unmatched pairs as dissimilar, equivariance also requires similarity to vary faithfully according to the semantic changes. This allows VLMs to generalize better to nuanced and unseen multimodal compositions. However, modeling equivariance is challenging as the ground truth of semantic change is difficult to collect. For example, given an image-text pair about a dog, it is unclear to what extent the similarity changes when the pixel is changed from dog to cat? To this end, we propose EqSim, a regularization loss that can be efficiently calculated from any two matched training pairs and easily pluggable into existing image-text retrieval fine-tuning. Meanwhile, to further diagnose the equivariance of VLMs, we present a new challenging benchmark EqBen. Compared to the existing evaluation sets, EqBen is the first to focus on "visual-minimal change". Extensive experiments show the lack of equivariance in current VLMs and validate the effectiveness of EqSim. Code is available at //github.com/Wangt-CN/EqBen.

Large language models (LLMs) often demonstrate inconsistencies with human preferences. Previous research typically gathered human preference data and then aligned the pre-trained models using reinforcement learning or instruction tuning, a.k.a. the finetuning step. In contrast, aligning frozen LLMs without requiring alignment data is more appealing. This work explores the potential of the latter setting. We discover that by integrating self-evaluation and rewind mechanisms, unaligned LLMs can directly produce responses consistent with human preferences via self-boosting. We introduce a novel inference method, Rewindable Auto-regressive INference (RAIN), that allows pre-trained LLMs to evaluate their own generation and use the evaluation results to guide rewind and generation for AI safety. Notably, RAIN operates without the need of extra data for model alignment and abstains from any training, gradient computation, or parameter updates. Experimental results evaluated by GPT-4 and humans demonstrate the effectiveness of RAIN: on the HH dataset, RAIN improves the harmlessness rate of LLaMA 30B from 82% of vanilla inference to 97%, while maintaining the helpfulness rate. On the TruthfulQA dataset, RAIN improves the truthfulness of the already-well-aligned LLaMA-2-chat 13B model by 5%.

Recently, to mitigate the confusion between different languages in code-switching (CS) automatic speech recognition (ASR), the conditionally factorized models, such as the language-aware encoder (LAE), explicitly disregard the contextual information between different languages. However, this information may be helpful for ASR modeling. To alleviate this issue, we propose the LAE-ST-MoE framework. It incorporates speech translation (ST) tasks into LAE and utilizes ST to learn the contextual information between different languages. It introduces a task-based mixture of expert modules, employing separate feed-forward networks for the ASR and ST tasks. Experimental results on the ASRU 2019 Mandarin-English CS challenge dataset demonstrate that, compared to the LAE-based CTC, the LAE-ST-MoE model achieves a 9.26% mix error reduction on the CS test with the same decoding parameter. Moreover, the well-trained LAE-ST-MoE model can perform ST tasks from CS speech to Mandarin or English text.

Retrieving documents and prepending them in-context at inference time improves performance of language model (LMs) on a wide range of tasks. However, these documents, often spanning hundreds of words, make inference substantially more expensive. We propose compressing the retrieved documents into textual summaries prior to in-context integration. This not only reduces the computational costs but also relieves the burden of LMs to identify relevant information in long retrieved documents. We present two compressors -- an extractive compressor which selects useful sentences from retrieved documents and an abstractive compressor which generates summaries by synthesizing information from multiple documents. Both compressors are trained to improve LMs' performance on end tasks when the generated summaries are prepended to the LMs' input, while keeping the summary concise.If the retrieved documents are irrelevant to the input or offer no additional information to LM, our compressor can return an empty string, implementing selective augmentation.We evaluate our approach on language modeling task and open domain question answering task. We achieve a compression rate of as low as 6% with minimal loss in performance for both tasks, significantly outperforming the off-the-shelf summarization models. We show that our compressors trained for one LM can transfer to other LMs on the language modeling task and provide summaries largely faithful to the retrieved documents.

The recent progress in large language models (LLMs), especially the invention of chain-of-thought prompting, has made it possible to automatically answer questions by stepwise reasoning. However, when faced with more complicated problems that require non-linear thinking, even the strongest LLMs make mistakes. To address this, we explore whether LLMs are able to recognize errors in their own step-by-step reasoning, without resorting to external resources. To this end, we propose SelfCheck, a general-purpose zero-shot verification schema for recognizing such errors. We then use the results of these checks to improve question-answering performance by conducting weighted voting on multiple solutions to the question. We test SelfCheck on three datasets (GSM8K, MathQA, and MATH) and find that it successfully recognizes errors and, in turn, increases final answer accuracies.

Knowledge enhanced pre-trained language models (K-PLMs) are shown to be effective for many public tasks in the literature but few of them have been successfully applied in practice. To address this problem, we propose K-AID, a systematic approach that includes a low-cost knowledge acquisition process for acquiring domain knowledge, an effective knowledge infusion module for improving model performance, and a knowledge distillation component for reducing the model size and deploying K-PLMs on resource-restricted devices (e.g., CPU) for real-world application. Importantly, instead of capturing entity knowledge like the majority of existing K-PLMs, our approach captures relational knowledge, which contributes to better-improving sentence-level text classification and text matching tasks that play a key role in question answering (QA). We conducted a set of experiments on five text classification tasks and three text matching tasks from three domains, namely E-commerce, Government, and Film&TV, and performed online A/B tests in E-commerce. Experimental results show that our approach is able to achieve substantial improvement on sentence-level question answering tasks and bring beneficial business value in industrial settings.

Transformer-based pretrained language models (T-PTLMs) have achieved great success in almost every NLP task. The evolution of these models started with GPT and BERT. These models are built on the top of transformers, self-supervised learning and transfer learning. Transformed-based PTLMs learn universal language representations from large volumes of text data using self-supervised learning and transfer this knowledge to downstream tasks. These models provide good background knowledge to downstream tasks which avoids training of downstream models from scratch. In this comprehensive survey paper, we initially give a brief overview of self-supervised learning. Next, we explain various core concepts like pretraining, pretraining methods, pretraining tasks, embeddings and downstream adaptation methods. Next, we present a new taxonomy of T-PTLMs and then give brief overview of various benchmarks including both intrinsic and extrinsic. We present a summary of various useful libraries to work with T-PTLMs. Finally, we highlight some of the future research directions which will further improve these models. We strongly believe that this comprehensive survey paper will serve as a good reference to learn the core concepts as well as to stay updated with the recent happenings in T-PTLMs.

Recently, the emergence of pre-trained models (PTMs) has brought natural language processing (NLP) to a new era. In this survey, we provide a comprehensive review of PTMs for NLP. We first briefly introduce language representation learning and its research progress. Then we systematically categorize existing PTMs based on a taxonomy with four perspectives. Next, we describe how to adapt the knowledge of PTMs to the downstream tasks. Finally, we outline some potential directions of PTMs for future research. This survey is purposed to be a hands-on guide for understanding, using, and developing PTMs for various NLP tasks.

Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.

北京阿比特科技有限公司