亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Conventional ASR systems use frame-level phoneme posterior to conduct force-alignment~(FA) and provide timestamps, while end-to-end ASR systems especially AED based ones are short of such ability. This paper proposes to perform timestamp prediction~(TP) while recognizing by utilizing continuous integrate-and-fire~(CIF) mechanism in non-autoregressive ASR model - Paraformer. Foucing on the fire place bias issue of CIF, we conduct post-processing strategies including fire-delay and silence insertion. Besides, we propose to use scaled-CIF to smooth the weights of CIF output, which is proved beneficial for both ASR and TP task. Accumulated averaging shift~(AAS) and diarization error rate~(DER) are adopted to measure the quality of timestamps and we compare these metrics of proposed system and conventional hybrid force-alignment system. The experiment results over manually-marked timestamps testset show that the proposed optimization methods significantly improve the accuracy of CIF timestamps, reducing 66.7\% and 82.1\% of AAS and DER respectively. Comparing to Kaldi force-alignment trained with the same data, optimized CIF timestamps achieved 12.3\% relative AAS reduction.

相關內容

語(yu)音(yin)識(shi)別是計算機(ji)(ji)科學(xue)(xue)(xue)和(he)計算語(yu)言(yan)(yan)學(xue)(xue)(xue)的(de)一(yi)個跨學(xue)(xue)(xue)科子領域,它發展(zhan)了一(yi)些方法和(he)技術(shu),使計算機(ji)(ji)可(ke)以將口語(yu)識(shi)別和(he)翻譯(yi)成文本(ben)。 它也(ye)被稱為自(zi)動(dong)語(yu)音(yin)識(shi)別(ASR),計算機(ji)(ji)語(yu)音(yin)識(shi)別或語(yu)音(yin)轉文本(ben)(STT)。它整(zheng)合了計算機(ji)(ji)科學(xue)(xue)(xue),語(yu)言(yan)(yan)學(xue)(xue)(xue)和(he)計算機(ji)(ji)工程領域的(de)知識(shi)和(he)研究(jiu)。

Tiny object detection has become an active area of research because images with tiny targets are common in several important real-world scenarios. However, existing tiny object detection methods use standard deep neural networks as their backbone architecture. We argue that such backbones are inappropriate for detecting tiny objects as they are designed for the classification of larger objects, and do not have the spatial resolution to identify small targets. Specifically, such backbones use max-pooling or a large stride at early stages in the architecture. This produces lower resolution feature-maps that can be efficiently processed by subsequent layers. However, such low-resolution feature-maps do not contain information that can reliably discriminate tiny objects. To solve this problem we design 'bottom-heavy' versions of backbones that allocate more resources to processing higher-resolution features without introducing any additional computational burden overall. We also investigate if pre-training these backbones on images of appropriate size, using CIFAR100 and ImageNet32, can further improve performance on tiny object detection. Results on TinyPerson and WiderFace show that detectors with our proposed backbones achieve better results than the current state-of-the-art methods.

Whilst the availability of 3D LiDAR point cloud data has significantly grown in recent years, annotation remains expensive and time-consuming, leading to a demand for semi-supervised semantic segmentation methods with application domains such as autonomous driving. Existing work very often employs relatively large segmentation backbone networks to improve segmentation accuracy, at the expense of computational costs. In addition, many use uniform sampling to reduce ground truth data requirements for learning needed, often resulting in sub-optimal performance. To address these issues, we propose a new pipeline that employs a smaller architecture, requiring fewer ground-truth annotations to achieve superior segmentation accuracy compared to contemporary approaches. This is facilitated via a novel Sparse Depthwise Separable Convolution module that significantly reduces the network parameter count while retaining overall task performance. To effectively sub-sample our training data, we propose a new Spatio-Temporal Redundant Frame Downsampling (ST-RFD) method that leverages knowledge of sensor motion within the environment to extract a more diverse subset of training data frame samples. To leverage the use of limited annotated data samples, we further propose a soft pseudo-label method informed by LiDAR reflectivity. Our method outperforms contemporary semi-supervised work in terms of mIoU, using less labeled data, on the SemanticKITTI (59.5@5%) and ScribbleKITTI (58.1@5%) benchmark datasets, based on a 2.3x reduction in model parameters and 641x fewer multiply-add operations whilst also demonstrating significant performance improvement on limited training data (i.e., Less is More).

Code-switching speech refers to a means of expression by mixing two or more languages within a single utterance. Automatic Speech Recognition (ASR) with End-to-End (E2E) modeling for such speech can be a challenging task due to the lack of data. In this study, we investigate text generation and injection for improving the performance of an industry commonly-used streaming model, Transformer-Transducer (T-T), in Mandarin-English code-switching speech recognition. We first propose a strategy to generate code-switching text data and then investigate injecting generated text into T-T model explicitly by Text-To-Speech (TTS) conversion or implicitly by tying speech and text latent spaces. Experimental results on the T-T model trained with a dataset containing 1,800 hours of real Mandarin-English code-switched speech show that our approaches to inject generated code-switching text significantly boost the performance of T-T models, i.e., 16% relative Token-based Error Rate (TER) reduction averaged on three evaluation sets, and the approach of tying speech and text latent spaces is superior to that of TTS conversion on the evaluation set which contains more homogeneous data with the training set.

Event extraction (EE) plays an important role in many industrial application scenarios, and high-quality EE methods require a large amount of manual annotation data to train supervised learning models. However, the cost of obtaining annotation data is very high, especially for annotation of domain events, which requires the participation of experts from corresponding domain. So we introduce active learning (AL) technology to reduce the cost of event annotation. But the existing AL methods have two main problems, which make them not well used for event extraction. Firstly, the existing pool-based selection strategies have limitations in terms of computational cost and sample validity. Secondly, the existing evaluation of sample importance lacks the use of local sample information. In this paper, we present a novel deep AL method for EE. We propose a batch-based selection strategy and a Memory-Based Loss Prediction model (MBLP) to select unlabeled samples efficiently. During the selection process, we use an internal-external sample loss ranking method to evaluate the sample importance by using local information. Finally, we propose a delayed training strategy to train the MBLP model. Extensive experiments are performed on three domain datasets, and our method outperforms other state-of-the-art methods.

We present DialogPaint, an innovative framework that employs an interactive conversational approach for image editing. The framework comprises a pretrained dialogue model (Blenderbot) and a diffusion model (Stable Diffusion). The dialogue model engages in conversation with users to understand their requirements and generates concise instructions based on the dialogue. Subsequently, the Stable Diffusion model employs these instructions, along with the input image, to produce the desired output. Due to the difficulty of acquiring fine-tuning data for such models, we leverage multiple large-scale models to generate simulated dialogues and corresponding image pairs. After fine-tuning our framework with the synthesized data, we evaluate its performance in real application scenes. The results demonstrate that DialogPaint excels in both objective and subjective evaluation metrics effectively handling ambiguous instructions and performing tasks such as object replacement, style transfer, color modification. Moreover, our framework supports multi-round editing, allowing for the completion of complicated editing tasks.

Compared to other severe weather image restoration tasks, single image desnowing is a more challenging task. This is mainly due to the diversity and irregularity of snow shape, which makes it extremely difficult to restore images in snowy scenes. Moreover, snow particles also have a veiling effect similar to haze or mist. Although current works can effectively remove snow particles with various shapes, they also bring distortion to the restored image. To address these issues, we propose a novel single image desnowing network called Star-Net. First, we design a Star type Skip Connection (SSC) to establish information channels for all different scale features, which can deal with the complex shape of snow particles.Second, we present a Multi-Stage Interactive Transformer (MIT) as the base module of Star-Net, which is designed to better understand snow particle shapes and to address image distortion by explicitly modeling a variety of important image recovery features. Finally, we propose a Degenerate Filter Module (DFM) to filter the snow particle and snow fog residual in the SSC on the spatial and channel domains. Extensive experiments show that our Star-Net achieves state-of-the-art snow removal performances on three standard snow removal datasets and retains the original sharpness of the images.

Existing text-video retrieval solutions are, in essence, discriminant models focused on maximizing the conditional likelihood, i.e., p(candidates|query). While straightforward, this de facto paradigm overlooks the underlying data distribution p(query), which makes it challenging to identify out-of-distribution data. To address this limitation, we creatively tackle this task from a generative viewpoint and model the correlation between the text and the video as their joint probability p(candidates,query). This is accomplished through a diffusion-based text-video retrieval framework (DiffusionRet), which models the retrieval task as a process of gradually generating joint distribution from noise. During training, DiffusionRet is optimized from both the generation and discrimination perspectives, with the generator being optimized by generation loss and the feature extractor trained with contrastive loss. In this way, DiffusionRet cleverly leverages the strengths of both generative and discriminative methods. Extensive experiments on five commonly used text-video retrieval benchmarks, including MSRVTT, LSMDC, MSVD, ActivityNet Captions, and DiDeMo, with superior performances, justify the efficacy of our method. More encouragingly, without any modification, DiffusionRet even performs well in out-domain retrieval settings. We believe this work brings fundamental insights into the related fields. Code will be available at //github.com/jpthu17/DiffusionRet.

Aiming to improve the Automatic Speech Recognition (ASR) outputs with a post-processing step, ASR error correction (EC) techniques have been widely developed due to their efficiency in using parallel text data. Previous works mainly focus on using text or/ and speech data, which hinders the performance gain when not only text and speech information, but other modalities, such as visual information are critical for EC. The challenges are mainly two folds: one is that previous work fails to emphasize visual information, thus rare exploration has been studied. The other is that the community lacks a high-quality benchmark where visual information matters for the EC models. Therefore, this paper provides 1) simple yet effective methods, namely gated fusion and image captions as prompts to incorporate visual information to help EC; 2) large-scale benchmark datasets, namely Visual-ASR-EC, where each item in the training data consists of visual, speech, and text information, and the test data are carefully selected by human annotators to ensure that even humans could make mistakes when visual information is missing. Experimental results show that using captions as prompts could effectively use the visual information and surpass state-of-the-art methods by upto 1.2% in Word Error Rate(WER), which also indicates that visual information is critical in our proposed Visual-ASR-EC dataset

Dense video captioning aims to generate text descriptions for all events in an untrimmed video. This involves both detecting and describing events. Therefore, all previous methods on dense video captioning tackle this problem by building two models, i.e. an event proposal and a captioning model, for these two sub-problems. The models are either trained separately or in alternation. This prevents direct influence of the language description to the event proposal, which is important for generating accurate descriptions. To address this problem, we propose an end-to-end transformer model for dense video captioning. The encoder encodes the video into appropriate representations. The proposal decoder decodes from the encoding with different anchors to form video event proposals. The captioning decoder employs a masking network to restrict its attention to the proposal event over the encoding feature. This masking network converts the event proposal to a differentiable mask, which ensures the consistency between the proposal and captioning during training. In addition, our model employs a self-attention mechanism, which enables the use of efficient non-recurrent structure during encoding and leads to performance improvements. We demonstrate the effectiveness of this end-to-end model on ActivityNet Captions and YouCookII datasets, where we achieved 10.12 and 6.58 METEOR score, respectively.

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司