With the rise of online hate speech, automatic detection of Hate Speech, Offensive texts as a natural language processing task is getting popular. However, very little research has been done to detect unintended social bias from these toxic language datasets. This paper introduces a new dataset ToxicBias curated from the existing dataset of Kaggle competition named "Jigsaw Unintended Bias in Toxicity Classification". We aim to detect social biases, their categories, and targeted groups. The dataset contains instances annotated for five different bias categories, viz., gender, race/ethnicity, religion, political, and LGBTQ. We train transformer-based models using our curated datasets and report baseline performance for bias identification, target generation, and bias implications. Model biases and their mitigation are also discussed in detail. Our study motivates a systematic extraction of social bias data from toxic language datasets. All the codes and dataset used for experiments in this work are publicly available
Financial institutions manage operational risk by carrying out the activities required by regulation, such as collecting loss data, calculating capital requirements, and reporting. The information necessary for this purpose is then collected in the OpRisk databases. Recorded for each OpRisk event are loss amounts, dates, organizational units involved, event types and descriptions. In recent years, operational risk functions have been required to go beyond their regulatory tasks to proactively manage the operational risk, preventing or mitigating its impact. As OpRisk databases also contain event descriptions, usually defined as free text fields, an area of opportunity is the valorization of all the information contained in such records. As far as we are aware of, the present work is the first one that has addressed the application of text analysis techniques to the OpRisk event descriptions. In this way, we have complemented and enriched the established framework of statistical methods based on quantitative data. Specifically, we have applied text analysis methodologies to extract information from descriptions in the OpRisk database. After delicate tasks like data cleaning, text vectorization, and semantic adjustment, we apply methods of dimensionality reduction and several clustering models and algorithms to develop a comparison of their performances and weaknesses. Our results improve retrospective knowledge of loss events and enable to mitigate future risks.
Error correction in automatic speech recognition (ASR) aims to correct those incorrect words in sentences generated by ASR models. Since recent ASR models usually have low word error rate (WER), to avoid affecting originally correct tokens, error correction models should only modify incorrect words, and therefore detecting incorrect words is important for error correction. Previous works on error correction either implicitly detect error words through target-source attention or CTC (connectionist temporal classification) loss, or explicitly locate specific deletion/substitution/insertion errors. However, implicit error detection does not provide clear signal about which tokens are incorrect and explicit error detection suffers from low detection accuracy. In this paper, we propose SoftCorrect with a soft error detection mechanism to avoid the limitations of both explicit and implicit error detection. Specifically, we first detect whether a token is correct or not through a probability produced by a dedicatedly designed language model, and then design a constrained CTC loss that only duplicates the detected incorrect tokens to let the decoder focus on the correction of error tokens. Compared with implicit error detection with CTC loss, SoftCorrect provides explicit signal about which words are incorrect and thus does not need to duplicate every token but only incorrect tokens; compared with explicit error detection, SoftCorrect does not detect specific deletion/substitution/insertion errors but just leaves it to CTC loss. Experiments on AISHELL-1 and Aidatatang datasets show that SoftCorrect achieves 26.1% and 9.4% CER reduction respectively, outperforming previous works by a large margin, while still enjoying fast speed of parallel generation.
The widespread of offensive content online, such as hate speech and cyber-bullying, is a global phenomenon. This has sparked interest in the artificial intelligence (AI) and natural language processing (NLP) communities, motivating the development of various systems trained to detect potentially harmful content automatically. These systems require annotated datasets to train the machine learning (ML) models. However, with a few notable exceptions, most datasets on this topic have dealt with English and a few other high-resource languages. As a result, the research in offensive language identification has been limited to these languages. This paper addresses this gap by tackling offensive language identification in Sinhala, a low-resource Indo-Aryan language spoken by over 17 million people in Sri Lanka. We introduce the Sinhala Offensive Language Dataset (SOLD) and present multiple experiments on this dataset. SOLD is a manually annotated dataset containing 10,000 posts from Twitter annotated as offensive and not offensive at both sentence-level and token-level, improving the explainability of the ML models. SOLD is the first large publicly available offensive language dataset compiled for Sinhala. We also introduce SemiSOLD, a larger dataset containing more than 145,000 Sinhala tweets, annotated following a semi-supervised approach.
This paper presents our solution for the 2nd COVID-19 Severity Detection Competition. This task aims to distinguish the Mild, Moderate, Severe, and Critical grades in COVID-19 chest CT images. In our approach, we devise a novel infection-aware 3D Contrastive Mixup Classification network for severity grading. Specifcally, we train two segmentation networks to first extract the lung region and then the inner lesion region. The lesion segmentation mask serves as complementary information for the original CT slices. To relieve the issue of imbalanced data distribution, we further improve the advanced Contrastive Mixup Classification network by weighted cross-entropy loss. On the COVID-19 severity detection leaderboard, our approach won the first place with a Macro F1 Score of 51.76%. It significantly outperforms the baseline method by over 11.46%.
The rapidly evolving industry demands high accuracy of the models without the need for time-consuming and computationally expensive experiments required for fine-tuning. Moreover, a model and training pipeline, which was once carefully optimized for a specific dataset, rarely generalizes well to training on a different dataset. This makes it unrealistic to have carefully fine-tuned models for each use case. To solve this, we propose an alternative approach that also forms a backbone of Intel Geti platform: a dataset-agnostic template for object detection trainings, consisting of carefully chosen and pre-trained models together with a robust training pipeline for further training. Our solution works out-of-the-box and provides a strong baseline on a wide range of datasets. It can be used on its own or as a starting point for further fine-tuning for specific use cases when needed. We obtained dataset-agnostic templates by performing parallel training on a corpus of datasets and optimizing the choice of architectures and training tricks with respect to the average results on the whole corpora. We examined a number of architectures, taking into account the performance-accuracy trade-off. Consequently, we propose 3 finalists, VFNet, ATSS, and SSD, that can be deployed on CPU using the OpenVINO toolkit. The source code is available as a part of the OpenVINO Training Extensions (//github.com/openvinotoolkit/training_extensions}
Pretrained transformer models have achieved state-of-the-art results in many tasks and benchmarks recently. Many state-of-the-art Language Models (LMs), however, do not scale well above the threshold of 512 input tokens. In specialized domains though (such as legal, scientific or biomedical), models often need to process very long text (sometimes well above 10000 tokens). Even though many efficient transformers have been proposed (such as Longformer, BigBird or FNet), so far, only very few such efficient models are available for specialized domains. Additionally, since the pretraining process is extremely costly in general - but even more so as the sequence length increases - it is often only in reach of large research labs. One way of making pretraining cheaper is the Replaced Token Detection (RTD) task, by providing more signal during training, since the loss can be computed over all tokens. In this work, we train Longformer models with the efficient RTD task on legal data to showcase that pretraining efficient LMs is possible using much less compute. We evaluate the trained models on challenging summarization tasks requiring the model to summarize long texts to show to what extent the models can achieve good performance on downstream tasks. We find that both the small and base models outperform their baselines on the in-domain BillSum and out-of-domain PubMed tasks in their respective parameter range. We publish our code and models for research purposes.
Automatic speech recognition (ASR) has been established as a well-performing technique for many scenarios where lots of labeled data is available. Additionally, unsupervised representation learning recently helped to tackle tasks with limited data. Following this, hardware limitations and applications give rise to the question how to efficiently take advantage of large pretrained models and reduce their complexity for downstream tasks. In this work, we study a challenging low resource conversational telephony speech corpus from the medical domain in Vietnamese and German. We show the benefits of using unsupervised techniques beyond simple fine-tuning of large pre-trained models, discuss how to adapt them to a practical telephony task including bandwidth transfer and investigate different data conditions for pre-training and fine-tuning. We outperform the project baselines by 22% relative using pretraining techniques. Further gains of 29% can be achieved by refinements of architecture and training and 6% by adding 0.8 h of in-domain adaptation data.
As facial recognition systems are deployed more widely, scholars and activists have studied their biases and harms. Audits are commonly used to accomplish this and compare the algorithmic facial recognition systems' performance against datasets with various metadata labels about the subjects of the images. Seminal works have found discrepancies in performance by gender expression, age, perceived race, skin type, etc. These studies and audits often examine algorithms which fall into two categories: academic models or commercial models. We present a detailed comparison between academic and commercial face detection systems, specifically examining robustness to noise. We find that state-of-the-art academic face detection models exhibit demographic disparities in their noise robustness, specifically by having statistically significant decreased performance on older individuals and those who present their gender in a masculine manner. When we compare the size of these disparities to that of commercial models, we conclude that commercial models - in contrast to their relatively larger development budget and industry-level fairness commitments - are always as biased or more biased than an academic model.
Machine learning has achieved great success in electroencephalogram (EEG) based brain-computer interfaces (BCIs). Most existing BCI research focused on improving its accuracy, but few had considered its security. Recent studies, however, have shown that EEG-based BCIs are vulnerable to adversarial attacks, where small perturbations added to the input can cause misclassification. Detection of adversarial examples is crucial to both the understanding of this phenomenon and the defense. This paper, for the first time, explores adversarial detection in EEG-based BCIs. Experiments on two EEG datasets using three convolutional neural networks were performed to verify the performances of multiple detection approaches. We showed that both white-box and black-box attacks can be detected, and the former are easier to detect.
It is a common paradigm in object detection frameworks to treat all samples equally and target at maximizing the performance on average. In this work, we revisit this paradigm through a careful study on how different samples contribute to the overall performance measured in terms of mAP. Our study suggests that the samples in each mini-batch are neither independent nor equally important, and therefore a better classifier on average does not necessarily mean higher mAP. Motivated by this study, we propose the notion of Prime Samples, those that play a key role in driving the detection performance. We further develop a simple yet effective sampling and learning strategy called PrIme Sample Attention (PISA) that directs the focus of the training process towards such samples. Our experiments demonstrate that it is often more effective to focus on prime samples than hard samples when training a detector. Particularly, On the MSCOCO dataset, PISA outperforms the random sampling baseline and hard mining schemes, e.g. OHEM and Focal Loss, consistently by more than 1% on both single-stage and two-stage detectors, with a strong backbone ResNeXt-101.