亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Multi-modal Large Language Models (MLLMs) have exhibited impressive capability. However, recently many deficiencies of MLLMs have been found compared to human intelligence, $\textit{e.g.}$, hallucination. To drive the MLLMs study, the community dedicated efforts to building larger benchmarks with complex tasks. In this paper, we propose benchmarking an essential but usually overlooked intelligence: $\textbf{association}$, a human's basic capability to link observation and prior practice memory. To comprehensively investigate MLLM's performance on the association, we formulate the association task and devise a standard benchmark based on adjective and verb semantic concepts. Instead of costly data annotation and curation, we propose a convenient $\textbf{annotation-free}$ construction method transforming the general dataset for our association tasks. Simultaneously, we devise a rigorous data refinement process to eliminate confusion in the raw dataset. Building on this database, we establish three levels of association tasks: single-step, synchronous, and asynchronous associations. Moreover, we conduct a comprehensive investigation into the MLLMs' zero-shot association capabilities, addressing multiple dimensions, including three distinct memory strategies, both open-source and closed-source MLLMs, cutting-edge Mixture-of-Experts (MoE) models, and the involvement of human experts. Our systematic investigation shows that current open-source MLLMs consistently exhibit poor capability in our association tasks, even the currently state-of-the-art GPT-4V(vision) also has a significant gap compared to humans. We believe our benchmark would pave the way for future MLLM studies. $\textit{Our data and code are available at:}$ //mvig-rhos.com/llm_inception.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 相同 · Lyapunov · 優化器 · 數值分析 ·
2024 年 11 月 9 日

We construct a family of explicit tamed Euler--Maruyama (TEM) schemes, which can preserve the same Lyapunov structure for super-linear stochastic ordinary differential equations (SODEs) driven by multiplicative noise.These TEM schemes are shown to inherit the geometric ergodicity of the considered SODEs and converge with optimal strong convergence orders. Numerical experiments verify our theoretical results.

Large Language Models (LLMs) are able to improve their responses when instructed to do so, a capability known as self-correction. When instructions provide only the task's goal without specific details about potential issues in the response, LLMs must rely on their internal knowledge to improve response quality, a process referred to as intrinsic self-correction. The empirical success of intrinsic self-correction is evident in various applications, but how and why it is effective remains unknown. In this paper, we unveil that intrinsic self-correction can be progressively improved, allowing it to approach a converged state. Our findings are verified in: (1) the scenario of multi-round question answering, by comprehensively demonstrating that intrinsic self-correction can progressively introduce performance gains through iterative interactions, ultimately converging to stable performance; and (2) the context of intrinsic self-correction for enhanced morality, in which we provide empirical evidence that iteratively applying instructions reduces model uncertainty towards convergence, which then leads to convergence of both the calibration error and self-correction performance, ultimately resulting in a stable state of intrinsic self-correction. Furthermore, we introduce a mathematical formulation and a simulation task indicating that the latent concepts activated by self-correction instructions drive the reduction of model uncertainty. Based on our experimental results and analysis of the convergence of intrinsic self-correction, we reveal its underlying mechanism: consistent injected instructions reduce model uncertainty which yields converged, improved performance.

Particle accelerator operation requires simultaneous optimization of multiple objectives. Multi-Objective Optimization (MOO) is particularly challenging due to trade-offs between the objectives. Evolutionary algorithms, such as genetic algorithm (GA), have been leveraged for many optimization problems, however, they do not apply to complex control problems by design. This paper demonstrates the power of differentiability for solving MOO problems using a Deep Differentiable Reinforcement Learning (DDRL) algorithm in particle accelerators. We compare DDRL algorithm with Model Free Reinforcement Learning (MFRL), GA and Bayesian Optimization (BO) for simultaneous optimization of heat load and trip rates in the Continuous Electron Beam Accelerator Facility (CEBAF). The underlying problem enforces strict constraints on both individual states and actions as well as cumulative (global) constraint for energy requirements of the beam. A physics-based surrogate model based on real data is developed. This surrogate model is differentiable and allows back-propagation of gradients. The results are evaluated in the form of a Pareto-front for two objectives. We show that the DDRL outperforms MFRL, BO, and GA on high dimensional problems.

Due to a variety of reasons, such as privacy, data in the wild often misses the grouping information required for identifying minorities. On the other hand, it is known that machine learning models are only as good as the data they are trained on and, hence, may underperform for the under-represented minority groups. The missing grouping information presents a dilemma for responsible data scientists who find themselves in an unknown-unknown situation, where not only do they not have access to the grouping attributes but do not also know what groups to consider. This paper is an attempt to address this dilemma. Specifically, we propose a minority mining problem, where we find vectors in the attribute space that reveal potential groups that are under-represented and under-performing. Technically speaking, we propose a geometric transformation of data into a dual space and use notions such as the arrangement of hyperplanes to design an efficient algorithm for the problem in lower dimensions. Generalizing our solution to the higher dimensions is cursed by dimensionality. Therefore, we propose a solution based on smart exploration of the search space for such cases. We conduct comprehensive experiments using real-world and synthetic datasets alongside the theoretical analysis. Our experiment results demonstrate the effectiveness of our proposed solutions in mining the unknown, under-represented, and under-performing minorities.

Evolutionary Multi-Objective Optimization Algorithms (EMOAs) are widely employed to tackle problems with multiple conflicting objectives. Recent research indicates that not all objectives are equally important to the decision-maker (DM). In the context of interactive EMOAs, preference information elicited from the DM during the optimization process can be leveraged to identify and discard irrelevant objectives, a crucial step when objective evaluations are computationally expensive. However, much of the existing literature fails to account for the dynamic nature of DM preferences, which can evolve throughout the decision-making process and affect the relevance of objectives. This study addresses this limitation by simulating dynamic shifts in DM preferences within a ranking-based interactive algorithm. Additionally, we propose methods to discard outdated or conflicting preferences when such shifts occur. Building on prior research, we also introduce a mechanism to safeguard relevant objectives that may become trapped in local or global optima due to the diminished correlation with the DM-provided rankings. Our experimental results demonstrate that the proposed methods effectively manage evolving preferences and significantly enhance the quality and desirability of the solutions produced by the algorithm.

Explainable Artificial Intelligence (XAI) is transforming the field of Artificial Intelligence (AI) by enhancing the trust of end-users in machines. As the number of connected devices keeps on growing, the Internet of Things (IoT) market needs to be trustworthy for the end-users. However, existing literature still lacks a systematic and comprehensive survey work on the use of XAI for IoT. To bridge this lacking, in this paper, we address the XAI frameworks with a focus on their characteristics and support for IoT. We illustrate the widely-used XAI services for IoT applications, such as security enhancement, Internet of Medical Things (IoMT), Industrial IoT (IIoT), and Internet of City Things (IoCT). We also suggest the implementation choice of XAI models over IoT systems in these applications with appropriate examples and summarize the key inferences for future works. Moreover, we present the cutting-edge development in edge XAI structures and the support of sixth-generation (6G) communication services for IoT applications, along with key inferences. In a nutshell, this paper constitutes the first holistic compilation on the development of XAI-based frameworks tailored for the demands of future IoT use cases.

Recently, Mutual Information (MI) has attracted attention in bounding the generalization error of Deep Neural Networks (DNNs). However, it is intractable to accurately estimate the MI in DNNs, thus most previous works have to relax the MI bound, which in turn weakens the information theoretic explanation for generalization. To address the limitation, this paper introduces a probabilistic representation of DNNs for accurately estimating the MI. Leveraging the proposed MI estimator, we validate the information theoretic explanation for generalization, and derive a tighter generalization bound than the state-of-the-art relaxations.

Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.

Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.

Many natural language processing tasks solely rely on sparse dependencies between a few tokens in a sentence. Soft attention mechanisms show promising performance in modeling local/global dependencies by soft probabilities between every two tokens, but they are not effective and efficient when applied to long sentences. By contrast, hard attention mechanisms directly select a subset of tokens but are difficult and inefficient to train due to their combinatorial nature. In this paper, we integrate both soft and hard attention into one context fusion model, "reinforced self-attention (ReSA)", for the mutual benefit of each other. In ReSA, a hard attention trims a sequence for a soft self-attention to process, while the soft attention feeds reward signals back to facilitate the training of the hard one. For this purpose, we develop a novel hard attention called "reinforced sequence sampling (RSS)", selecting tokens in parallel and trained via policy gradient. Using two RSS modules, ReSA efficiently extracts the sparse dependencies between each pair of selected tokens. We finally propose an RNN/CNN-free sentence-encoding model, "reinforced self-attention network (ReSAN)", solely based on ReSA. It achieves state-of-the-art performance on both Stanford Natural Language Inference (SNLI) and Sentences Involving Compositional Knowledge (SICK) datasets.

北京阿比特科技有限公司