Neural operator architectures approximate operators between infinite-dimensional Banach spaces of functions. They are gaining increased attention in computational science and engineering, due to their potential both to accelerate traditional numerical methods and to enable data-driven discovery. A popular variant of neural operators is the Fourier neural operator (FNO). Previous analysis proving universal operator approximation theorems for FNOs resorts to use of an unbounded number of Fourier modes and limits the basic form of the method to problems with periodic geometry. Prior work relies on intuition from traditional numerical methods, and interprets the FNO as a nonstandard and highly nonlinear spectral method. The present work challenges this point of view in two ways: (i) the work introduces a new broad class of operator approximators, termed nonlocal neural operators (NNOs), which allow for operator approximation between functions defined on arbitrary geometries, and includes the FNO as a special case; and (ii) analysis of the NNOs shows that, provided this architecture includes computation of a spatial average (corresponding to retaining only a single Fourier mode in the special case of the FNO) it benefits from universal approximation. It is demonstrated that this theoretical result unifies the analysis of a wide range of neural operator architectures. Furthermore, it sheds new light on the role of nonlocality, and its interaction with nonlinearity, thereby paving the way for a more systematic exploration of nonlocality, both through the development of new operator learning architectures and the analysis of existing and new architectures.
Finite element methods and kinematically coupled schemes that decouple the fluid velocity and structure's displacement have been extensively studied for incompressible fluid-structure interaction (FSI) over the past decade. While these methods are known to be stable and easy to implement, optimal error analysis has remained challenging. Previous work has primarily relied on the classical elliptic projection technique, which is only suitable for parabolic problems and does not lead to optimal convergence of numerical solutions to the FSI problems in the standard $L^2$ norm. In this article, we propose a new kinematically coupled scheme for incompressible FSI thin-structure model and establish a new framework for the numerical analysis of FSI problems in terms of a newly introduced coupled non-stationary Ritz projection, which allows us to prove the optimal-order convergence of the proposed method in the $L^2$ norm. The methodology presented in this article is also applicable to numerous other FSI models and serves as a fundamental tool for advancing research in this field.
Causal inference with spatial environmental data is often challenging due to the presence of interference: outcomes for observational units depend on some combination of local and non-local treatment. This is especially relevant when estimating the effect of power plant emissions controls on population health, as pollution exposure is dictated by (i) the location of point-source emissions, as well as (ii) the transport of pollutants across space via dynamic physical-chemical processes. In this work, we estimate the effectiveness of air quality interventions at coal-fired power plants in reducing two adverse health outcomes in Texas in 2016: pediatric asthma ED visits and Medicare all-cause mortality. We develop methods for causal inference with interference when the underlying network structure is not known with certainty and instead must be estimated from ancillary data. We offer a Bayesian, spatial mechanistic model for the interference mapping which we combine with a flexible non-parametric outcome model to marginalize estimates of causal effects over uncertainty in the structure of interference. Our analysis finds some evidence that emissions controls at upwind power plants reduce asthma ED visits and all-cause mortality, however accounting for uncertainty in the interference renders the results largely inconclusive.
In this paper, we develop a fast and accurate pseudospectral method to approximate numerically the fractional Laplacian $(-\Delta)^{\alpha/2}$ of a function on $\mathbb{R}$ for $\alpha=1$; this case, commonly referred to as the half Laplacian, is equivalent to the Hilbert transform of the derivative of the function. The main ideas are as follows. Given a twice continuously differentiable bounded function $u\in \mathit{C}_b^2(\mathbb{R})$, we apply the change of variable $x=L\cot(s)$, with $L>0$ and $s\in[0,\pi]$, which maps $\mathbb{R}$ into $[0,\pi]$, and denote $(-\Delta)_s^{1/2}u(x(s)) \equiv (-\Delta)^{1/2}u(x)$. Therefore, by performing a Fourier series expansion of $u(x(s))$, the problem is reduced to computing $(-\Delta)_s^{1/2}e^{iks} \equiv (-\Delta)^{1/2}(x + i)^k/(1+x^2)^{k/2}$. On a previous work, we considered the case with $k$ even and $\alpha\in(0,2)$, so we focus now on the case with $k$ odd. More precisely, we express $(-\Delta)_s^{1/2}e^{iks}$ for $k$ odd in terms of the Gaussian hypergeometric function ${}_2F_1$, and also as a well-conditioned finite sum. Then, we use a fast convolution result, that enable us to compute very efficiently $\sum_{l = 0}^Ma_l(-\Delta)_s^{1/2}e^{i(2l+1)s}$, for extremely large values of $M$. This enables us to approximate $(-\Delta)_s^{1/2}u(x(s))$ in a fast and accurate way, especially when $u(x(s))$ is not periodic of period $\pi$.
This paper presents a novel approach to Bayesian nonparametric spectral analysis of stationary multivariate time series. Starting with a parametric vector-autoregressive model, the parametric likelihood is nonparametrically adjusted in the frequency domain to account for potential deviations from parametric assumptions. We show mutual contiguity of the nonparametrically corrected likelihood, the multivariate Whittle likelihood approximation and the exact likelihood for Gaussian time series. A multivariate extension of the nonparametric Bernstein-Dirichlet process prior for univariate spectral densities to the space of Hermitian positive definite spectral density matrices is specified directly on the correction matrices. An infinite series representation of this prior is then used to develop a Markov chain Monte Carlo algorithm to sample from the posterior distribution. The code is made publicly available for ease of use and reproducibility. With this novel approach we provide a generalization of the multivariate Whittle-likelihood-based method of Meier et al. (2020) as well as an extension of the nonparametrically corrected likelihood for univariate stationary time series of Kirch et al. (2019) to the multivariate case. We demonstrate that the nonparametrically corrected likelihood combines the efficiencies of a parametric with the robustness of a nonparametric model. Its numerical accuracy is illustrated in a comprehensive simulation study. We illustrate its practical advantages by a spectral analysis of two environmental time series data sets: a bivariate time series of the Southern Oscillation Index and fish recruitment and time series of windspeed data at six locations in California.
In this paper we present a new perspective on error analysis of Legendre approximations for differentiable functions. We start by introducing a sequence of Legendre-Gauss-Lobatto polynomials and prove their theoretical properties, such as an explicit and optimal upper bound. We then apply these properties to derive a new and explicit bound for the Legendre coefficients of differentiable functions and establish some explicit and optimal error bounds for Legendre projections in the $L^2$ and $L^{\infty}$ norms. Illustrative examples are provided to demonstrate the sharpness of our new results.
In this work, we prove rigorous error estimates for a hybrid method introduced in [15] for solving the time-dependent radiation transport equation (RTE). The method relies on a splitting of the kinetic distribution function for the radiation into uncollided and collided components. A high-resolution method (in angle) is used to approximate the uncollided components and a low-resolution method is used to approximate the the collided component. After each time step, the kinetic distribution is reinitialized to be entirely uncollided. For this analysis, we consider a mono-energetic problem on a periodic domains, with constant material cross-sections of arbitrary size. To focus the analysis, we assume the uncollided equation is solved exactly and the collided part is approximated in angle via a spherical harmonic expansion ($\text{P}_N$ method). Using a non-standard set of semi-norms, we obtain estimates of the form $C(\varepsilon,\sigma,\Delta t)N^{-s}$ where $s\geq 1$ denotes the regularity of the solution in angle, $\varepsilon$ and $\sigma$ are scattering parameters, $\Delta t$ is the time-step before reinitialization, and $C$ is a complicated function of $\varepsilon$, $\sigma$, and $\Delta t$. These estimates involve analysis of the multiscale RTE that includes, but necessarily goes beyond, usual spectral analysis. We also compute error estimates for the monolithic $\text{P}_N$ method with the same resolution as the collided part in the hybrid. Our results highlight the benefits of the hybrid approach over the monolithic discretization in both highly scattering and streaming regimes.
Empirical neural tangent kernels (eNTKs) can provide a good understanding of a given network's representation: they are often far less expensive to compute and applicable more broadly than infinite width NTKs. For networks with O output units (e.g. an O-class classifier), however, the eNTK on N inputs is of size $NO \times NO$, taking $O((NO)^2)$ memory and up to $O((NO)^3)$ computation. Most existing applications have therefore used one of a handful of approximations yielding $N \times N$ kernel matrices, saving orders of magnitude of computation, but with limited to no justification. We prove that one such approximation, which we call "sum of logits", converges to the true eNTK at initialization for any network with a wide final "readout" layer. Our experiments demonstrate the quality of this approximation for various uses across a range of settings.
Image classification is one of the most fundamental tasks in Computer Vision. In practical applications, the datasets are usually not as abundant as those in the laboratory and simulation, which is always called as Data Hungry. How to extract the information of data more completely and effectively is very important. Therefore, an Adaptive Data Augmentation Framework based on the tensor T-product Operator is proposed in this paper, to triple one image data to be trained and gain the result from all these three images together with only less than 0.1% increase in the number of parameters. At the same time, this framework serves the functions of column image embedding and global feature intersection, enabling the model to obtain information in not only spatial but frequency domain, and thus improving the prediction accuracy of the model. Numerical experiments have been designed for several models, and the results demonstrate the effectiveness of this adaptive framework. Numerical experiments show that our data augmentation framework can improve the performance of original neural network model by 2%, which provides competitive results to state-of-the-art methods.
Graph Neural Networks (GNNs) have been successfully used in many problems involving graph-structured data, achieving state-of-the-art performance. GNNs typically employ a message-passing scheme, in which every node aggregates information from its neighbors using a permutation-invariant aggregation function. Standard well-examined choices such as the mean or sum aggregation functions have limited capabilities, as they are not able to capture interactions among neighbors. In this work, we formalize these interactions using an information-theoretic framework that notably includes synergistic information. Driven by this definition, we introduce the Graph Ordering Attention (GOAT) layer, a novel GNN component that captures interactions between nodes in a neighborhood. This is achieved by learning local node orderings via an attention mechanism and processing the ordered representations using a recurrent neural network aggregator. This design allows us to make use of a permutation-sensitive aggregator while maintaining the permutation-equivariance of the proposed GOAT layer. The GOAT model demonstrates its increased performance in modeling graph metrics that capture complex information, such as the betweenness centrality and the effective size of a node. In practical use-cases, its superior modeling capability is confirmed through its success in several real-world node classification benchmarks.
In many important graph data processing applications the acquired information includes both node features and observations of the graph topology. Graph neural networks (GNNs) are designed to exploit both sources of evidence but they do not optimally trade-off their utility and integrate them in a manner that is also universal. Here, universality refers to independence on homophily or heterophily graph assumptions. We address these issues by introducing a new Generalized PageRank (GPR) GNN architecture that adaptively learns the GPR weights so as to jointly optimize node feature and topological information extraction, regardless of the extent to which the node labels are homophilic or heterophilic. Learned GPR weights automatically adjust to the node label pattern, irrelevant on the type of initialization, and thereby guarantee excellent learning performance for label patterns that are usually hard to handle. Furthermore, they allow one to avoid feature over-smoothing, a process which renders feature information nondiscriminative, without requiring the network to be shallow. Our accompanying theoretical analysis of the GPR-GNN method is facilitated by novel synthetic benchmark datasets generated by the so-called contextual stochastic block model. We also compare the performance of our GNN architecture with that of several state-of-the-art GNNs on the problem of node-classification, using well-known benchmark homophilic and heterophilic datasets. The results demonstrate that GPR-GNN offers significant performance improvement compared to existing techniques on both synthetic and benchmark data.