亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Whenever a binary classifier is used to provide decision support, it typically provides both a label prediction and a confidence value. Then, the decision maker is supposed to use the confidence value to calibrate how much to trust the prediction. In this context, it has been often argued that the confidence value should correspond to a well calibrated estimate of the probability that the predicted label matches the ground truth label. However, multiple lines of empirical evidence suggest that decision makers have difficulties at developing a good sense on when to trust a prediction using these confidence values. In this paper, our goal is first to understand why and then investigate how to construct more useful confidence values. We first argue that, for a broad class of utility functions, there exist data distributions for which a rational decision maker is, in general, unlikely to discover the optimal decision policy using the above confidence values -- an optimal decision maker would need to sometimes place more (less) trust on predictions with lower (higher) confidence values. However, we then show that, if the confidence values satisfy a natural alignment property with respect to the decision maker's confidence on her own predictions, there always exists an optimal decision policy under which the level of trust the decision maker would need to place on predictions is monotone on the confidence values, facilitating its discoverability. Further, we show that multicalibration with respect to the decision maker's confidence on her own predictions is a sufficient condition for alignment. Experiments on four different AI-assisted decision making tasks where a classifier provides decision support to real human experts validate our theoretical results and suggest that alignment may lead to better decisions.

相關內容

Information aging has gained prominence in characterizing communication protocols for timely remote estimation and control applications. This work proposes an Age of Information (AoI)-aware threshold-based dynamic frame slotted ALOHA (T-DFSA) for contention resolution in random access machine-type communication networks. Unlike conventional DFSA that maximizes the throughput in each frame, the frame length and age-gain threshold in T-DFSA are determined to minimize the normalized average AoI reduction of the network in each frame. At the start of each frame in the proposed protocol, the common Access Point (AP) stores an estimate of the age-gain distribution of a typical node. Depending on the observed status of the slots, age-gains of successful nodes, and maximum available AoI, the AP adjusts its estimation in each frame. The maximum available AoI is exploited to derive the maximum possible age-gain at each frame and thus, to avoid overestimating the age-gain threshold, which may render T-DFSA unstable. Numerical results validate our theoretical analysis and demonstrate the effectiveness of the proposed T-DFSA compared to the existing optimal frame slotted ALOHA, threshold-ALOHA, and age-based thinning protocols in a considerable range of update generation rates.

We exploit analogies between first-order algorithms for constrained optimization and non-smooth dynamical systems to design a new class of accelerated first-order algorithms for constrained optimization. Unlike Frank-Wolfe or projected gradients, these algorithms avoid optimization over the entire feasible set at each iteration. We prove convergence to stationary points even in a nonconvex setting and we derive accelerated rates for the convex setting both in continuous time, as well as in discrete time. An important property of these algorithms is that constraints are expressed in terms of velocities instead of positions, which naturally leads to sparse, local and convex approximations of the feasible set (even if the feasible set is nonconvex). Thus, the complexity tends to grow mildly in the number of decision variables and in the number of constraints, which makes the algorithms suitable for machine learning applications. We apply our algorithms to a compressed sensing and a sparse regression problem, showing that we can treat nonconvex $\ell^p$ constraints ($p<1$) efficiently, while recovering state-of-the-art performance for $p=1$.

Anomaly detection has gained considerable attention due to its broad range of applications, particularly in industrial defect detection. To address the challenges of data collection, researchers have introduced zero-/few-shot anomaly detection techniques that require minimal normal images for each category. However, complex industrial scenarios often involve multiple objects, presenting a significant challenge. In light of this, we propose a straightforward yet powerful multi-scale memory comparison framework for zero-/few-shot anomaly detection. Our approach employs a global memory bank to capture features across the entire image, while an individual memory bank focuses on simplified scenes containing a single object. The efficacy of our method is validated by its remarkable achievement of 4th place in the zero-shot track and 2nd place in the few-shot track of the Visual Anomaly and Novelty Detection (VAND) competition.

In contrast to conventional reconfigurable intelligent surface (RIS), simultaneous transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) has been proposed recently to enlarge the serving area from 180o to 360o coverage. This work considers the performance of a STAR-RIS aided full-duplex (FD) non-orthogonal multiple access (NOMA) communication systems. The STAR-RIS is implemented at the cell-edge to assist the cell-edge users, while the cell-center users can communicate directly with a FD base station (BS). We first introduce new user clustering schemes for the downlink and uplink transmissions. Then, based on the proposed transmission schemes closed-form expressions of the ergodic rates in the downlink and uplink modes are derived taking into account the system impairments caused by the self interference at the FD-BS and the imperfect successive interference cancellation (SIC). Moreover, an optimization problem to maximize the total sum-rate is formulated and solved by optimizing the amplitudes and the phase-shifts of the STAR-RIS elements and allocating the transmit power efficiently. The performance of the proposed user clustering schemes and the optimal STAR-RIS design are investigated through numerical results

With the emerging diffusion models, recently, text-to-video generation has aroused increasing attention. But an important bottleneck therein is that generative videos often tend to carry some flickers and artifacts. In this work, we propose a dual-stream diffusion net (DSDN) to improve the consistency of content variations in generating videos. In particular, the designed two diffusion streams, video content and motion branches, could not only run separately in their private spaces for producing personalized video variations as well as content, but also be well-aligned between the content and motion domains through leveraging our designed cross-transformer interaction module, which would benefit the smoothness of generated videos. Besides, we also introduce motion decomposer and combiner to faciliate the operation on video motion. Qualitative and quantitative experiments demonstrate that our method could produce amazing continuous videos with fewer flickers.

Automatic verification of concurrent programs faces state explosion due to the exponential possible interleavings of its sequential components coupled with large or infinite state spaces. An alternative is deductive verification, where given a candidate invariant, we establish inductive invariance and show that any state satisfying the invariant is also safe. However, learning (inductive) program invariants is difficult. To this end, we propose a data-driven procedure to synthesize program invariants, where it is assumed that the program invariant is an expression that characterizes a (hopefully tight) over-approximation of the reachable program states. The main ideas of our approach are: (1) We treat a candidate invariant as a classifier separating states observed in (sampled) program traces from those speculated to be unreachable. (2) We develop an enumerative, template-free approach to learn such classifiers from positive and negative examples. At its core, our enumerative approach employs decision trees to generate expressions that do not over-fit to the observed states (and thus generalize). (3) We employ a runtime framework to monitor program executions that may refute the candidate invariant; every refutation triggers a revision of the candidate invariant. Our runtime framework can be viewed as an instance of statistical model checking, which gives us probabilistic guarantees on the candidate invariant. We also show that such in some cases, our counterexample-guided inductive synthesis approach converges (in probability) to an overapproximation of the reachable set of states. Our experimental results show that our framework excels in learning useful invariants using only a fraction of the set of reachable states for a wide variety of concurrent programs.

Social relations are often used to improve recommendation quality when user-item interaction data is sparse in recommender systems. Most existing social recommendation models exploit pairwise relations to mine potential user preferences. However, real-life interactions among users are very complicated and user relations can be high-order. Hypergraph provides a natural way to model complex high-order relations, while its potentials for improving social recommendation are under-explored. In this paper, we fill this gap and propose a multi-channel hypergraph convolutional network to enhance social recommendation by leveraging high-order user relations. Technically, each channel in the network encodes a hypergraph that depicts a common high-order user relation pattern via hypergraph convolution. By aggregating the embeddings learned through multiple channels, we obtain comprehensive user representations to generate recommendation results. However, the aggregation operation might also obscure the inherent characteristics of different types of high-order connectivity information. To compensate for the aggregating loss, we innovatively integrate self-supervised learning into the training of the hypergraph convolutional network to regain the connectivity information with hierarchical mutual information maximization. The experimental results on multiple real-world datasets show that the proposed model outperforms the SOTA methods, and the ablation study verifies the effectiveness of the multi-channel setting and the self-supervised task. The implementation of our model is available via //github.com/Coder-Yu/RecQ.

External knowledge is often useful for natural language understanding tasks. We introduce a contextual text representation model called Conceptual-Contextual (CC) embeddings, which incorporates structured knowledge into text representations. Unlike entity embedding methods, our approach encodes a knowledge graph into a context model. CC embeddings can be easily reused for a wide range of tasks just like pre-trained language models. Our model effectively encodes the huge UMLS database by leveraging semantic generalizability. Experiments on electronic health records (EHRs) and medical text processing benchmarks showed our model gives a major boost to the performance of supervised medical NLP tasks.

External knowledge is often useful for natural language understanding tasks. We introduce a contextual text representation model called Conceptual-Contextual (CC) embeddings, which incorporates structured knowledge into text representations. Unlike entity embedding methods, our approach encodes a knowledge graph into a context model. CC embeddings can be easily reused for a wide range of tasks just like pre-trained language models. Our model effectively encodes the huge UMLS database by leveraging semantic generalizability. Experiments on electronic health records (EHRs) and medical text processing benchmarks showed our model gives a major boost to the performance of supervised medical NLP tasks.

Object detection is considered as one of the most challenging problems in computer vision, since it requires correct prediction of both classes and locations of objects in images. In this study, we define a more difficult scenario, namely zero-shot object detection (ZSD) where no visual training data is available for some of the target object classes. We present a novel approach to tackle this ZSD problem, where a convex combination of embeddings are used in conjunction with a detection framework. For evaluation of ZSD methods, we propose a simple dataset constructed from Fashion-MNIST images and also a custom zero-shot split for the Pascal VOC detection challenge. The experimental results suggest that our method yields promising results for ZSD.

北京阿比特科技有限公司