亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The free-form deformation model can represent a wide range of non-rigid deformations by manipulating a control point lattice over the image. However, due to a large number of parameters, it is challenging to fit the free-form deformation model directly to the deformed image for deformation estimation because of the complexity of the fitness landscape. In this paper, we cast the registration task as a multi-objective optimization problem (MOP) according to the fact that regions affected by each control point overlap with each other. Specifically, by partitioning the template image into several regions and measuring the similarity of each region independently, multiple objectives are built and deformation estimation can thus be realized by solving the MOP with off-the-shelf multi-objective evolutionary algorithms (MOEAs). In addition, a coarse-to-fine strategy is realized by image pyramid combined with control point mesh subdivision. Specifically, the optimized candidate solutions of the current image level are inherited by the next level, which increases the ability to deal with large deformation. Also, a post-processing procedure is proposed to generate a single output utilizing the Pareto optimal solutions. Comparative experiments on both synthetic and real-world images show the effectiveness and usefulness of our deformation estimation method.

相關內容

Visual Emotion Analysis (VEA), which aims to predict people's emotions towards different visual stimuli, has become an attractive research topic recently. Rather than a single label classification task, it is more rational to regard VEA as a Label Distribution Learning (LDL) problem by voting from different individuals. Existing methods often predict visual emotion distribution in a unified network, neglecting the inherent subjectivity in its crowd voting process. In psychology, the \textit{Object-Appraisal-Emotion} model has demonstrated that each individual's emotion is affected by his/her subjective appraisal, which is further formed by the affective memory. Inspired by this, we propose a novel \textit{Subjectivity Appraise-and-Match Network (SAMNet)} to investigate the subjectivity in visual emotion distribution. To depict the diversity in crowd voting process, we first propose the \textit{Subjectivity Appraising} with multiple branches, where each branch simulates the emotion evocation process of a specific individual. Specifically, we construct the affective memory with an attention-based mechanism to preserve each individual's unique emotional experience. A subjectivity loss is further proposed to guarantee the divergence between different individuals. Moreover, we propose the \textit{Subjectivity Matching} with a matching loss, aiming at assigning unordered emotion labels to ordered individual predictions in a one-to-one correspondence with the Hungarian algorithm. Extensive experiments and comparisons are conducted on public visual emotion distribution datasets, and the results demonstrate that the proposed SAMNet consistently outperforms the state-of-the-art methods. Ablation study verifies the effectiveness of our method and visualization proves its interpretability.

This paper studies category-level object pose estimation based on a single monocular image. Recent advances in pose-aware generative models have paved the way for addressing this challenging task using analysis-by-synthesis. The idea is to sequentially update a set of latent variables, e.g., pose, shape, and appearance, of the generative model until the generated image best agrees with the observation. However, convergence and efficiency are two challenges of this inference procedure. In this paper, we take a deeper look at the inference of analysis-by-synthesis from the perspective of visual navigation, and investigate what is a good navigation policy for this specific task. We evaluate three different strategies, including gradient descent, reinforcement learning and imitation learning, via thorough comparisons in terms of convergence, robustness and efficiency. Moreover, we show that a simple hybrid approach leads to an effective and efficient solution. We further compare these strategies to state-of-the-art methods, and demonstrate superior performance on synthetic and real-world datasets leveraging off-the-shelf pose-aware generative models.

Shape-constrained density estimation is an important topic in mathematical statistics. We focus on densities on $\mathbb{R}^d$ that are log-concave, and we study geometric properties of the maximum likelihood estimator (MLE) for weighted samples. Cule, Samworth, and Stewart showed that the logarithm of the optimal log-concave density is piecewise linear and supported on a regular subdivision of the samples. This defines a map from the space of weights to the set of regular subdivisions of the samples, i.e. the face poset of their secondary polytope. We prove that this map is surjective. In fact, every regular subdivision arises in the MLE for some set of weights with positive probability, but coarser subdivisions appear to be more likely to arise than finer ones. To quantify these results, we introduce a continuous version of the secondary polytope, whose dual we name the Samworth body. This article establishes a new link between geometric combinatorics and nonparametric statistics, and it suggests numerous open problems.

3D object detection has achieved remarkable progress by taking point clouds as the only input. However, point clouds often suffer from incomplete geometric structures and the lack of semantic information, which makes detectors hard to accurately classify detected objects. In this work, we focus on how to effectively utilize object-level information from images to boost the performance of point-based 3D detector. We present DeMF, a simple yet effective method to fuse image information into point features. Given a set of point features and image feature maps, DeMF adaptively aggregates image features by taking the projected 2D location of the 3D point as reference. We evaluate our method on the challenging SUN RGB-D dataset, improving state-of-the-art results by a large margin (+2.1 [email protected] and [email protected]). Code is available at //github.com/haoy945/DeMF.

Human pose estimation aims to locate the human body parts and build human body representation (e.g., body skeleton) from input data such as images and videos. It has drawn increasing attention during the past decade and has been utilized in a wide range of applications including human-computer interaction, motion analysis, augmented reality, and virtual reality. Although the recently developed deep learning-based solutions have achieved high performance in human pose estimation, there still remain challenges due to insufficient training data, depth ambiguities, and occlusions. The goal of this survey paper is to provide a comprehensive review of recent deep learning-based solutions for both 2D and 3D pose estimation via a systematic analysis and comparison of these solutions based on their input data and inference procedures. More than 240 research papers since 2014 are covered in this survey. Furthermore, 2D and 3D human pose estimation datasets and evaluation metrics are included. Quantitative performance comparisons of the reviewed methods on popular datasets are summarized and discussed. Finally, the challenges involved, applications, and future research directions are concluded. We also provide a regularly updated project page on: \url{//github.com/zczcwh/DL-HPE}

We present a new method to learn video representations from large-scale unlabeled video data. Ideally, this representation will be generic and transferable, directly usable for new tasks such as action recognition and zero or few-shot learning. We formulate unsupervised representation learning as a multi-modal, multi-task learning problem, where the representations are shared across different modalities via distillation. Further, we introduce the concept of loss function evolution by using an evolutionary search algorithm to automatically find optimal combination of loss functions capturing many (self-supervised) tasks and modalities. Thirdly, we propose an unsupervised representation evaluation metric using distribution matching to a large unlabeled dataset as a prior constraint, based on Zipf's law. This unsupervised constraint, which is not guided by any labeling, produces similar results to weakly-supervised, task-specific ones. The proposed unsupervised representation learning results in a single RGB network and outperforms previous methods. Notably, it is also more effective than several label-based methods (e.g., ImageNet), with the exception of large, fully labeled video datasets.

This work addresses a novel and challenging problem of estimating the full 3D hand shape and pose from a single RGB image. Most current methods in 3D hand analysis from monocular RGB images only focus on estimating the 3D locations of hand keypoints, which cannot fully express the 3D shape of hand. In contrast, we propose a Graph Convolutional Neural Network (Graph CNN) based method to reconstruct a full 3D mesh of hand surface that contains richer information of both 3D hand shape and pose. To train networks with full supervision, we create a large-scale synthetic dataset containing both ground truth 3D meshes and 3D poses. When fine-tuning the networks on real-world datasets without 3D ground truth, we propose a weakly-supervised approach by leveraging the depth map as a weak supervision in training. Through extensive evaluations on our proposed new datasets and two public datasets, we show that our proposed method can produce accurate and reasonable 3D hand mesh, and can achieve superior 3D hand pose estimation accuracy when compared with state-of-the-art methods.

Image-to-image translation aims to learn the mapping between two visual domains. There are two main challenges for many applications: 1) the lack of aligned training pairs and 2) multiple possible outputs from a single input image. In this work, we present an approach based on disentangled representation for producing diverse outputs without paired training images. To achieve diversity, we propose to embed images onto two spaces: a domain-invariant content space capturing shared information across domains and a domain-specific attribute space. Our model takes the encoded content features extracted from a given input and the attribute vectors sampled from the attribute space to produce diverse outputs at test time. To handle unpaired training data, we introduce a novel cross-cycle consistency loss based on disentangled representations. Qualitative results show that our model can generate diverse and realistic images on a wide range of tasks without paired training data. For quantitative comparisons, we measure realism with user study and diversity with a perceptual distance metric. We apply the proposed model to domain adaptation and show competitive performance when compared to the state-of-the-art on the MNIST-M and the LineMod datasets.

Image captioning is a challenging task that combines the field of computer vision and natural language processing. A variety of approaches have been proposed to achieve the goal of automatically describing an image, and recurrent neural network (RNN) or long-short term memory (LSTM) based models dominate this field. However, RNNs or LSTMs cannot be calculated in parallel and ignore the underlying hierarchical structure of a sentence. In this paper, we propose a framework that only employs convolutional neural networks (CNNs) to generate captions. Owing to parallel computing, our basic model is around 3 times faster than NIC (an LSTM-based model) during training time, while also providing better results. We conduct extensive experiments on MSCOCO and investigate the influence of the model width and depth. Compared with LSTM-based models that apply similar attention mechanisms, our proposed models achieves comparable scores of BLEU-1,2,3,4 and METEOR, and higher scores of CIDEr. We also test our model on the paragraph annotation dataset, and get higher CIDEr score compared with hierarchical LSTMs

Image segmentation is still an open problem especially when intensities of the interested objects are overlapped due to the presence of intensity inhomogeneity (also known as bias field). To segment images with intensity inhomogeneities, a bias correction embedded level set model is proposed where Inhomogeneities are Estimated by Orthogonal Primary Functions (IEOPF). In the proposed model, the smoothly varying bias is estimated by a linear combination of a given set of orthogonal primary functions. An inhomogeneous intensity clustering energy is then defined and membership functions of the clusters described by the level set function are introduced to rewrite the energy as a data term of the proposed model. Similar to popular level set methods, a regularization term and an arc length term are also included to regularize and smooth the level set function, respectively. The proposed model is then extended to multichannel and multiphase patterns to segment colourful images and images with multiple objects, respectively. It has been extensively tested on both synthetic and real images that are widely used in the literature and public BrainWeb and IBSR datasets. Experimental results and comparison with state-of-the-art methods demonstrate that advantages of the proposed model in terms of bias correction and segmentation accuracy.

北京阿比特科技有限公司