亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Localization in high-level Autonomous Driving (AD) systems is highly security critical. While the popular Multi-Sensor Fusion (MSF) based design can be more robust against single-source sensor spoofing attacks, it is found recently that state-of-the-art MSF algorithms is vulnerable to GPS spoofing alone due to practical factors, which can cause various road hazards such as driving off road or onto the wrong way. In this work, we perform the first systematic exploration of the novel usage of lane detection (LD) to defend against such attacks. We first systematically analyze the potentials of such a domain-specific defense opportunity, and then design a novel LD-based defense approach, $LD^3$, that aims at not only detecting such attacks effectively in the real time, but also safely stopping the victim in the ego lane upon detection considering the absence of onboard human drivers. We evaluate $LD^3$ on real-world sensor traces and find that it can achieve effective and timely detection against existing attack with 100% true positive rates and 0% false positive rates. Results also show that $LD^3$ is robust to diverse environmental conditions and is effective at steering the AD vehicle to safely stop within the current traffic lane. We implement $LD^3$ on two open-source high-level AD systems, Baidu Apollo and Autoware, and validate its defense capability in both simulation and the physical world in end-to-end driving. We further conduct adaptive attack evaluations and find that $LD^3$ is effective at bounding the deviations from reaching the attack goals in stealthy attacks and is robust to latest LD-side attack.

相關內容

The problem of coordinated data collection is studied for a mobile crowdsensing (MCS) system. A mobile crowdsensing platform (MCSP) sequentially publishes sensing tasks to the available mobile units (MUs) that signal their willingness to participate in a task by sending sensing offers back to the MCSP. From the received offers, the MCSP decides the task assignment. A stable task assignment must address two challenges: the MCSP's and MUs' conflicting goals, and the uncertainty about the MUs' required efforts and preferences. To overcome these challenges a novel decentralized approach combining matching theory and online learning, called collision-avoidance multi-armed bandit with strategic free sensing (CA-MAB-SFS), is proposed. The task assignment problem is modeled as a matching game considering the MCSP's and MUs' individual goals while the MUs learn their efforts online. Our innovative "free-sensing" mechanism significantly improves the MU's learning process while reducing collisions during task allocation. The stable regret of CA-MAB-SFS, i.e., the loss of learning, is analytically shown to be bounded by a sublinear function, ensuring the convergence to a stable optimal solution. Simulation results show that CA-MAB-SFS increases the MUs' and the MCSP's satisfaction compared to state-of-the-art methods while reducing the average task completion time by at least 16%.

Tactile Internet based operations, e.g., telesurgery, rely on end-to-end closed loop control for accuracy and corrections. The feedback and control are subject to network latency and loss. We design two edge intelligence algorithms hosted at P4 programmable end switches. These algorithms locally compute and command corrective signals, thereby dispense the feedback signals from traversing the network to the other ends and save on control loop latency and network load. We implement these algorithms entirely on data plane on Netronome Agilio SmartNICs using P4. Our first algorithm, $\textit{pose correction}$, is placed at the edge switch connected to an industrial robot gripping a tool. The round trip between transmitting force sensor array readings to the edge switch and receiving correct tip coordinates at the robot is shown to be less than $100~\mu s$. The second algorithm, $\textit{tremor suppression}$, is placed at the edge switch connected to the human operator. It suppresses physiological tremors of amplitudes smaller than $100~\mu m$ which not only improves the application's performance but also reduces the network load up to $99.9\%$. Our solution allows edge intelligence modules to seamlessly switch between the algorithms based on the tasks being executed at the end hosts.

Cross-domain NER is a challenging task to address the low-resource problem in practical scenarios. Previous typical solutions mainly obtain a NER model by pre-trained language models (PLMs) with data from a rich-resource domain and adapt it to the target domain. Owing to the mismatch issue among entity types in different domains, previous approaches normally tune all parameters of PLMs, ending up with an entirely new NER model for each domain. Moreover, current models only focus on leveraging knowledge in one general source domain while failing to successfully transfer knowledge from multiple sources to the target. To address these issues, we introduce Collaborative Domain-Prefix Tuning for cross-domain NER (CP-NER) based on text-to-text generative PLMs. Specifically, we present text-to-text generation grounding domain-related instructors to transfer knowledge to new domain NER tasks without structural modifications. We utilize frozen PLMs and conduct collaborative domain-prefix tuning to stimulate the potential of PLMs to handle NER tasks across various domains. Experimental results on the Cross-NER benchmark show that the proposed approach has flexible transfer ability and performs better on both one-source and multiple-source cross-domain NER tasks. Codes are available in //github.com/zjunlp/DeepKE/tree/main/example/ner/cross.

NSFW (Not Safe for Work) content, in the context of a dialogue, can have severe side effects on users in open-domain dialogue systems. However, research on detecting NSFW language, especially sexually explicit content, within a dialogue context has significantly lagged behind. To address this issue, we introduce CensorChat, a dialogue monitoring dataset aimed at NSFW dialogue detection. Leveraging knowledge distillation techniques involving GPT-4 and ChatGPT, this dataset offers a cost-effective means of constructing NSFW content detectors. The process entails collecting real-life human-machine interaction data and breaking it down into single utterances and single-turn dialogues, with the chatbot delivering the final utterance. ChatGPT is employed to annotate unlabeled data, serving as a training set. Rationale validation and test sets are constructed using ChatGPT and GPT-4 as annotators, with a self-criticism strategy for resolving discrepancies in labeling. A BERT model is fine-tuned as a text classifier on pseudo-labeled data, and its performance is assessed. The study emphasizes the importance of AI systems prioritizing user safety and well-being in digital conversations while respecting freedom of expression. The proposed approach not only advances NSFW content detection but also aligns with evolving user protection needs in AI-driven dialogues.

More and more latency-sensitive services and applications are being deployed into the data center. Performance can be limited by the high latency of the network interconnect. Because the conventional network stack is designed not only for LAN, but also for WAN, it carries a great amount of redundancy that is not required in a data center network. This paper introduces the concept of a three-layer protocol stack that can fulfill the exact demands of data center network communications. The detailed design and implementation of the first layer of the stack, which we call RIFL, is presented. A novel low latency in-band hop-by-hop re-transmission protocol is proposed and adopted in RIFL, which guarantees lossless transmission in a data center environment. Experimental results show that RIFL achieves 110 nanoseconds point-to-point latency on 10-meter Active Optical Cables, at a line rate of 112 Gbps. RIFL is a multi-lane protocol with scalable throughput up to multi-hundred gigabits per second. It can be the enabler of low latency, high throughput, flexible, scalable, and lossless data center networks.

Many real-world dynamical systems can be described as State-Space Models (SSMs). In this formulation, each observation is emitted by a latent state, which follows first-order Markovian dynamics. A Probabilistic Deep SSM (ProDSSM) generalizes this framework to dynamical systems of unknown parametric form, where the transition and emission models are described by neural networks with uncertain weights. In this work, we propose the first deterministic inference algorithm for models of this type. Our framework allows efficient approximations for training and testing. We demonstrate in our experiments that our new method can be employed for a variety of tasks and enjoys a superior balance between predictive performance and computational budget.

Background noise considerably reduces the accuracy and reliability of speaker verification (SV) systems. These challenges can be addressed using a speech enhancement system as a front-end module. Recently, diffusion probabilistic models (DPMs) have exhibited remarkable noise-compensation capabilities in the speech enhancement domain. Building on this success, we propose Diff-SV, a noise-robust SV framework that leverages DPM. Diff-SV unifies a DPM-based speech enhancement system with a speaker embedding extractor, and yields a discriminative and noise-tolerable speaker representation through a hierarchical structure. The proposed model was evaluated under both in-domain and out-of-domain noisy conditions using the VoxCeleb1 test set, an external noise source, and the VOiCES corpus. The obtained experimental results demonstrate that Diff-SV achieves state-of-the-art performance, outperforming recently proposed noise-robust SV systems.

This paper presents an exhaustive quantitative and qualitative evaluation of Large Language Models (LLMs) for Knowledge Graph (KG) construction and reasoning. We employ eight distinct datasets that encompass aspects including entity, relation and event extraction, link prediction, and question answering. Empirically, our findings suggest that GPT-4 outperforms ChatGPT in the majority of tasks and even surpasses fine-tuned models in certain reasoning and question-answering datasets. Moreover, our investigation extends to the potential generalization ability of LLMs for information extraction, which culminates in the presentation of the Virtual Knowledge Extraction task and the development of the VINE dataset. Drawing on these empirical findings, we further propose AutoKG, a multi-agent-based approach employing LLMs for KG construction and reasoning, which aims to chart the future of this field and offer exciting opportunities for advancement. We anticipate that our research can provide invaluable insights for future undertakings of KG\footnote{Code and datasets will be available in //github.com/zjunlp/AutoKG.

With the extremely rapid advances in remote sensing (RS) technology, a great quantity of Earth observation (EO) data featuring considerable and complicated heterogeneity is readily available nowadays, which renders researchers an opportunity to tackle current geoscience applications in a fresh way. With the joint utilization of EO data, much research on multimodal RS data fusion has made tremendous progress in recent years, yet these developed traditional algorithms inevitably meet the performance bottleneck due to the lack of the ability to comprehensively analyse and interpret these strongly heterogeneous data. Hence, this non-negligible limitation further arouses an intense demand for an alternative tool with powerful processing competence. Deep learning (DL), as a cutting-edge technology, has witnessed remarkable breakthroughs in numerous computer vision tasks owing to its impressive ability in data representation and reconstruction. Naturally, it has been successfully applied to the field of multimodal RS data fusion, yielding great improvement compared with traditional methods. This survey aims to present a systematic overview in DL-based multimodal RS data fusion. More specifically, some essential knowledge about this topic is first given. Subsequently, a literature survey is conducted to analyse the trends of this field. Some prevalent sub-fields in the multimodal RS data fusion are then reviewed in terms of the to-be-fused data modalities, i.e., spatiospectral, spatiotemporal, light detection and ranging-optical, synthetic aperture radar-optical, and RS-Geospatial Big Data fusion. Furthermore, We collect and summarize some valuable resources for the sake of the development in multimodal RS data fusion. Finally, the remaining challenges and potential future directions are highlighted.

ASR (automatic speech recognition) systems like Siri, Alexa, Google Voice or Cortana has become quite popular recently. One of the key techniques enabling the practical use of such systems in people's daily life is deep learning. Though deep learning in computer vision is known to be vulnerable to adversarial perturbations, little is known whether such perturbations are still valid on the practical speech recognition. In this paper, we not only demonstrate such attacks can happen in reality, but also show that the attacks can be systematically conducted. To minimize users' attention, we choose to embed the voice commands into a song, called CommandSong. In this way, the song carrying the command can spread through radio, TV or even any media player installed in the portable devices like smartphones, potentially impacting millions of users in long distance. In particular, we overcome two major challenges: minimizing the revision of a song in the process of embedding commands, and letting the CommandSong spread through the air without losing the voice "command". Our evaluation demonstrates that we can craft random songs to "carry" any commands and the modify is extremely difficult to be noticed. Specially, the physical attack that we play the CommandSongs over the air and record them can success with 94 percentage.

北京阿比特科技有限公司