The Asian giant hornet (AGH) appeared in Washington State appears to have a potential danger of bioinvasion. Washington State has collected public photos and videos of detected insects for verification and further investigation. In this paper, we analyze AGH using data analysis,statistics, discrete mathematics, and deep learning techniques to process the data to controlAGH spreading.First, we visualize the geographical distribution of insects in Washington State. Then we investigate insect populations to varying months of the year and different days of a month.Third, we employ wavelet analysis to examine the periodic spread of AGH. Fourth, we apply ordinary differential equations to examine AGH numbers at the different natural growthrate and reaction speed and output the potential propagation coefficient. Next, we leverage cellular automaton combined with the potential propagation coefficient to simulate the geographical spread under changing potential propagation. To update the model, we use delayed differential equations to simulate human intervention. We use the time difference between detection time and submission time to determine the unit of time to delay time. After that, we construct a lightweight CNN called SqueezeNet and assess its classification performance. We then relate several non-reference image quality metrics, including NIQE, image gradient, entropy, contrast, and TOPSIS to judge the cause of misclassification. Furthermore, we build a Random Forest classifier to identify positive and negative samples based on image qualities only. We also display the feature importance and conduct an error analysis. Besides, we present sensitivity analysis to verify the robustness of our models. Finally, we show the strengths and weaknesses of our model and derives the conclusions.
Using large pre-trained models for image recognition tasks is becoming increasingly common owing to the well acknowledged success of recent models like vision transformers and other CNN-based models like VGG and Resnet. The high accuracy of these models on benchmark tasks has translated into their practical use across many domains including safety-critical applications like autonomous driving and medical diagnostics. Despite their widespread use, image models have been shown to be fragile to changes in the operating environment, bringing their robustness into question. There is an urgent need for methods that systematically characterise and quantify the capabilities of these models to help designers understand and provide guarantees about their safety and robustness. In this paper, we propose Vision Checklist, a framework aimed at interrogating the capabilities of a model in order to produce a report that can be used by a system designer for robustness evaluations. This framework proposes a set of perturbation operations that can be applied on the underlying data to generate test samples of different types. The perturbations reflect potential changes in operating environments, and interrogate various properties ranging from the strictly quantitative to more qualitative. Our framework is evaluated on multiple datasets like Tinyimagenet, CIFAR10, CIFAR100 and Camelyon17 and for models like ViT and Resnet. Our Vision Checklist proposes a specific set of evaluations that can be integrated into the previously proposed concept of a model card. Robustness evaluations like our checklist will be crucial in future safety evaluations of visual perception modules, and be useful for a wide range of stakeholders including designers, deployers, and regulators involved in the certification of these systems. Source code of Vision Checklist would be open for public use.
Humans show language-biased image recognition for a word-embedded image, known as picture-word interference. Such interference depends on hierarchical semantic categories and reflects that human language processing highly interacts with visual processing. Similar to humans, recent artificial models jointly trained on texts and images, e.g., OpenAI CLIP, show language-biased image classification. Exploring whether the bias leads to interferences similar to those observed in humans can contribute to understanding how much the model acquires hierarchical semantic representations from joint learning of language and vision. The present study introduces methodological tools from the cognitive science literature to assess the biases of artificial models. Specifically, we introduce a benchmark task to test whether words superimposed on images can distort the image classification across different category levels and, if it can, whether the perturbation is due to the shared semantic representation between language and vision. Our dataset is a set of word-embedded images and consists of a mixture of natural image datasets and hierarchical word labels with superordinate/basic category levels. Using this benchmark test, we evaluate the CLIP model. We show that presenting words distorts the image classification by the model across different category levels, but the effect does not depend on the semantic relationship between images and embedded words. This suggests that the semantic word representation in the CLIP visual processing is not shared with the image representation, although the word representation strongly dominates for word-embedded images.
Objective. Insecure Direct Object Reference (IDOR) or Broken Object Level Authorization (BOLA) are one of the critical type of access control vulnerabilities for modern applications. As a result, an attacker can bypass authorization checks leading to information leakage, account takeover. Our main research goal was to help an application security architect to optimize security design and testing process by giving an algorithm and tool that allows to automatically analyze system API specifications and generate list of possible vulnerabilities and attack vector ready to be used as security non-functional requirements. Method. We conducted a multivocal review of research and conference papers, bug bounty program reports and other grey sources of literature to outline patterns of attacks against IDOR vulnerability. These attacks are collected in groups proceeding with further analysis common attributes between these groups and what features compose the group. Endpoint properties and attack techniques comprise a group of attacks. Mapping between group features and existing OpenAPI specifications is performed to implement a tool for automatic discovery of potentially vulnerable endpoints. Results and practical relevance. In this work, we provide systematization of IDOR/BOLA attack techniques based on literature review, real cases analysis and derive IDOR/BOLA attack groups. We proposed an approach to describe IDOR/BOLA attacks based on OpenAPI specifications properties. We develop an algorithm of potential IDOR/BOLA vulnerabilities detection based on OpenAPI specification processing. We implemented our novel algorithm using Python and evaluated it. The results show that algorithm is resilient and can be used in practice to detect potential IDOR/BOLA vulnerabilities.
Controllable generation is one of the key requirements for successful adoption of deep generative models in real-world applications, but it still remains as a great challenge. In particular, the compositional ability to generate novel concept combinations is out of reach for most current models. In this work, we use energy-based models (EBMs) to handle compositional generation over a set of attributes. To make them scalable to high-resolution image generation, we introduce an EBM in the latent space of a pre-trained generative model such as StyleGAN. We propose a novel EBM formulation representing the joint distribution of data and attributes together, and we show how sampling from it is formulated as solving an ordinary differential equation (ODE). Given a pre-trained generator, all we need for controllable generation is to train an attribute classifier. Sampling with ODEs is done efficiently in the latent space and is robust to hyperparameters. Thus, our method is simple, fast to train, and efficient to sample. Experimental results show that our method outperforms the state-of-the-art in both conditional sampling and sequential editing. In compositional generation, our method excels at zero-shot generation of unseen attribute combinations. Also, by composing energy functions with logical operators, this work is the first to achieve such compositionality in generating photo-realistic images of resolution 1024x1024.
In this paper, we propose a one-stage online clustering method called Contrastive Clustering (CC) which explicitly performs the instance- and cluster-level contrastive learning. To be specific, for a given dataset, the positive and negative instance pairs are constructed through data augmentations and then projected into a feature space. Therein, the instance- and cluster-level contrastive learning are respectively conducted in the row and column space by maximizing the similarities of positive pairs while minimizing those of negative ones. Our key observation is that the rows of the feature matrix could be regarded as soft labels of instances, and accordingly the columns could be further regarded as cluster representations. By simultaneously optimizing the instance- and cluster-level contrastive loss, the model jointly learns representations and cluster assignments in an end-to-end manner. Extensive experimental results show that CC remarkably outperforms 17 competitive clustering methods on six challenging image benchmarks. In particular, CC achieves an NMI of 0.705 (0.431) on the CIFAR-10 (CIFAR-100) dataset, which is an up to 19\% (39\%) performance improvement compared with the best baseline.
Graph-based Semi-Supervised Learning (SSL) aims to transfer the labels of a handful of labeled data to the remaining massive unlabeled data via a graph. As one of the most popular graph-based SSL approaches, the recently proposed Graph Convolutional Networks (GCNs) have gained remarkable progress by combining the sound expressiveness of neural networks with graph structure. Nevertheless, the existing graph-based methods do not directly address the core problem of SSL, i.e., the shortage of supervision, and thus their performances are still very limited. To accommodate this issue, a novel GCN-based SSL algorithm is presented in this paper to enrich the supervision signals by utilizing both data similarities and graph structure. Firstly, by designing a semi-supervised contrastive loss, improved node representations can be generated via maximizing the agreement between different views of the same data or the data from the same class. Therefore, the rich unlabeled data and the scarce yet valuable labeled data can jointly provide abundant supervision information for learning discriminative node representations, which helps improve the subsequent classification result. Secondly, the underlying determinative relationship between the data features and input graph topology is extracted as supplementary supervision signals for SSL via using a graph generative loss related to the input features. Intensive experimental results on a variety of real-world datasets firmly verify the effectiveness of our algorithm compared with other state-of-the-art methods.
The area of Data Analytics on graphs promises a paradigm shift as we approach information processing of classes of data, which are typically acquired on irregular but structured domains (social networks, various ad-hoc sensor networks). Yet, despite its long history, current approaches mostly focus on the optimization of graphs themselves, rather than on directly inferring learning strategies, such as detection, estimation, statistical and probabilistic inference, clustering and separation from signals and data acquired on graphs. To fill this void, we first revisit graph topologies from a Data Analytics point of view, and establish a taxonomy of graph networks through a linear algebraic formalism of graph topology (vertices, connections, directivity). This serves as a basis for spectral analysis of graphs, whereby the eigenvalues and eigenvectors of graph Laplacian and adjacency matrices are shown to convey physical meaning related to both graph topology and higher-order graph properties, such as cuts, walks, paths, and neighborhoods. Next, to illustrate estimation strategies performed on graph signals, spectral analysis of graphs is introduced through eigenanalysis of mathematical descriptors of graphs and in a generic way. Finally, a framework for vertex clustering and graph segmentation is established based on graph spectral representation (eigenanalysis) which illustrates the power of graphs in various data association tasks. The supporting examples demonstrate the promise of Graph Data Analytics in modeling structural and functional/semantic inferences. At the same time, Part I serves as a basis for Part II and Part III which deal with theory, methods and applications of processing Data on Graphs and Graph Topology Learning from data.
Deep neural networks have achieved great successes on the image captioning task. However, most of the existing models depend heavily on paired image-sentence datasets, which are very expensive to acquire. In this paper, we make the first attempt to train an image captioning model in an unsupervised manner. Instead of relying on manually labeled image-sentence pairs, our proposed model merely requires an image set, a sentence corpus, and an existing visual concept detector. The sentence corpus is used to teach the captioning model how to generate plausible sentences. Meanwhile, the knowledge in the visual concept detector is distilled into the captioning model to guide the model to recognize the visual concepts in an image. In order to further encourage the generated captions to be semantically consistent with the image, the image and caption are projected into a common latent space so that they can be used to reconstruct each other. Given that the existing sentence corpora are mainly designed for linguistic research and thus with little reference to image contents, we crawl a large-scale image description corpus of 2 million natural sentences to facilitate the unsupervised image captioning scenario. Experimental results show that our proposed model is able to produce quite promising results without using any labeled training pairs.
Generative Adversarial Networks (GANs) can produce images of surprising complexity and realism, but are generally modeled to sample from a single latent source ignoring the explicit spatial interaction between multiple entities that could be present in a scene. Capturing such complex interactions between different objects in the world, including their relative scaling, spatial layout, occlusion, or viewpoint transformation is a challenging problem. In this work, we propose to model object composition in a GAN framework as a self-consistent composition-decomposition network. Our model is conditioned on the object images from their marginal distributions to generate a realistic image from their joint distribution by explicitly learning the possible interactions. We evaluate our model through qualitative experiments and user evaluations in both the scenarios when either paired or unpaired examples for the individual object images and the joint scenes are given during training. Our results reveal that the learned model captures potential interactions between the two object domains given as input to output new instances of composed scene at test time in a reasonable fashion.
Image segmentation is considered to be one of the critical tasks in hyperspectral remote sensing image processing. Recently, convolutional neural network (CNN) has established itself as a powerful model in segmentation and classification by demonstrating excellent performances. The use of a graphical model such as a conditional random field (CRF) contributes further in capturing contextual information and thus improving the segmentation performance. In this paper, we propose a method to segment hyperspectral images by considering both spectral and spatial information via a combined framework consisting of CNN and CRF. We use multiple spectral cubes to learn deep features using CNN, and then formulate deep CRF with CNN-based unary and pairwise potential functions to effectively extract the semantic correlations between patches consisting of three-dimensional data cubes. Effective piecewise training is applied in order to avoid the computationally expensive iterative CRF inference. Furthermore, we introduce a deep deconvolution network that improves the segmentation masks. We also introduce a new dataset and experimented our proposed method on it along with several widely adopted benchmark datasets to evaluate the effectiveness of our method. By comparing our results with those from several state-of-the-art models, we show the promising potential of our method.