Recent advances in neural radiance fields (NeRFs) achieve state-of-the-art novel view synthesis and facilitate dense estimation of scene properties. However, NeRFs often fail for large, unbounded scenes that are captured under very sparse views with the scene content concentrated far away from the camera, as is typical for field robotics applications. In particular, NeRF-style algorithms perform poorly: (1) when there are insufficient views with little pose diversity, (2) when scenes contain saturation and shadows, and (3) when finely sampling large unbounded scenes with fine structures becomes computationally intensive. This paper proposes CLONeR, which significantly improves upon NeRF by allowing it to model large outdoor driving scenes that are observed from sparse input sensor views. This is achieved by decoupling occupancy and color learning within the NeRF framework into separate Multi-Layer Perceptrons (MLPs) trained using LiDAR and camera data, respectively. In addition, this paper proposes a novel method to build differentiable 3D Occupancy Grid Maps (OGM) alongside the NeRF model, and leverage this occupancy grid for improved sampling of points along a ray for volumetric rendering in metric space. Through extensive quantitative and qualitative experiments on scenes from the KITTI dataset, this paper demonstrates that the proposed method outperforms state-of-the-art NeRF models on both novel view synthesis and dense depth prediction tasks when trained on sparse input data.
Neural signed distance functions (SDFs) have shown remarkable capability in representing geometry with details. However, without signed distance supervision, it is still a challenge to infer SDFs from point clouds or multi-view images using neural networks. In this paper, we claim that gradient consistency in the field, indicated by the parallelism of level sets, is the key factor affecting the inference accuracy. Hence, we propose a level set alignment loss to evaluate the parallelism of level sets, which can be minimized to achieve better gradient consistency. Our novelty lies in that we can align all level sets to the zero level set by constraining gradients at queries and their projections on the zero level set in an adaptive way. Our insight is to propagate the zero level set to everywhere in the field through consistent gradients to eliminate uncertainty in the field that is caused by the discreteness of 3D point clouds or the lack of observations from multi-view images. Our proposed loss is a general term which can be used upon different methods to infer SDFs from 3D point clouds and multi-view images. Our numerical and visual comparisons demonstrate that our loss can significantly improve the accuracy of SDFs inferred from point clouds or multi-view images under various benchmarks. Code and data are available at //github.com/mabaorui/TowardsBetterGradient .
In this work, we present a lightweight, tightly-coupled deep depth network and visual-inertial odometry (VIO) system, which can provide accurate state estimates and dense depth maps of the immediate surroundings. Leveraging the proposed lightweight Conditional Variational Autoencoder (CVAE) for depth inference and encoding, we provide the network with previously marginalized sparse features from VIO to increase the accuracy of initial depth prediction and generalization capability. The compact encoded depth maps are then updated jointly with navigation states in a sliding window estimator in order to provide the dense local scene geometry. We additionally propose a novel method to obtain the CVAE's Jacobian which is shown to be more than an order of magnitude faster than previous works, and we additionally leverage First-Estimate Jacobian (FEJ) to avoid recalculation. As opposed to previous works relying on completely dense residuals, we propose to only provide sparse measurements to update the depth code and show through careful experimentation that our choice of sparse measurements and FEJs can still significantly improve the estimated depth maps. Our full system also exhibits state-of-the-art pose estimation accuracy, and we show that it can run in real-time with single-thread execution while utilizing GPU acceleration only for the network and code Jacobian.
Neural Radiance Fields (NeRF) has demonstrated remarkable 3D reconstruction capabilities with dense view images. However, its performance significantly deteriorates under sparse view settings. We observe that learning the 3D consistency of pixels among different views is crucial for improving reconstruction quality in such cases. In this paper, we propose ConsistentNeRF, a method that leverages depth information to regularize both multi-view and single-view 3D consistency among pixels. Specifically, ConsistentNeRF employs depth-derived geometry information and a depth-invariant loss to concentrate on pixels that exhibit 3D correspondence and maintain consistent depth relationships. Extensive experiments on recent representative works reveal that our approach can considerably enhance model performance in sparse view conditions, achieving improvements of up to 94% in PSNR, 76% in SSIM, and 31% in LPIPS compared to the vanilla baselines across various benchmarks, including DTU, NeRF Synthetic, and LLFF.
Unrestricted adversarial attacks typically manipulate the semantic content of an image (e.g., color or texture) to create adversarial examples that are both effective and photorealistic, demonstrating their ability to deceive human perception and deep neural networks with stealth and success. However, current works usually sacrifice unrestricted degrees and subjectively select some image content to guarantee the photorealism of unrestricted adversarial examples, which limits its attack performance. To ensure the photorealism of adversarial examples and boost attack performance, we propose a novel unrestricted attack framework called Content-based Unrestricted Adversarial Attack. By leveraging a low-dimensional manifold that represents natural images, we map the images onto the manifold and optimize them along its adversarial direction. Therefore, within this framework, we implement Adversarial Content Attack based on Stable Diffusion and can generate high transferable unrestricted adversarial examples with various adversarial contents. Extensive experimentation and visualization demonstrate the efficacy of ACA, particularly in surpassing state-of-the-art attacks by an average of 13.3-50.4% and 16.8-48.0% in normally trained models and defense methods, respectively.
LIDAR and RADAR are two commonly used sensors in autonomous driving systems. The extrinsic calibration between the two is crucial for effective sensor fusion. The challenge arises due to the low accuracy and sparse information in RADAR measurements. This paper presents a novel solution for 3D RADAR-LIDAR calibration in autonomous systems. The method employs simple targets to generate data, including correspondence registration and a one-step optimization algorithm. The optimization aims to minimize the reprojection error while utilizing a small multi-layer perception (MLP) to perform regression on the return energy of the sensor around the targets. The proposed approach uses a deep learning framework such as PyTorch and can be optimized through gradient descent. The experiment uses a 360-degree Ouster-128 LIDAR and a 360-degree Navtech RADAR, providing raw measurements. The results validate the effectiveness of the proposed method in achieving improved estimates of extrinsic calibration parameters.
We introduce Reactive Action and Motion Planner (RAMP), which combines the strengths of search-based and reactive approaches for motion planning. In essence, RAMP is a hierarchical approach where a novel variant of a Model Predictive Path Integral (MPPI) controller is used to generate trajectories which are then followed asynchronously by a local vector field controller. We demonstrate, in the context of a table clearing application, that RAMP can rapidly find paths in the robot's configuration space, satisfy task and robot-specific constraints, and provide safety by reacting to static or dynamically moving obstacles. RAMP achieves superior performance through a number of key innovations: we use Signed Distance Function (SDF) representations directly from the robot configuration space, both for collision checking and reactive control. The use of SDFs allows for a smoother definition of collision cost when planning for a trajectory, and is critical in ensuring safety while following trajectories. In addition, we introduce a novel variant of MPPI which, combined with the safety guarantees of the vector field trajectory follower, performs incremental real-time global trajectory planning. Simulation results establish that our method can generate paths that are comparable to traditional and state-of-the-art approaches in terms of total trajectory length while being up to 30 times faster. Real-world experiments demonstrate the safety and effectiveness of our approach in challenging table clearing scenarios.
Shape implicit neural representations (INRs) have recently shown to be effective in shape analysis and reconstruction tasks. Existing INRs require point coordinates to learn the implicit level sets of the shape. When a normal vector is available for each point, a higher fidelity representation can be learned, however normal vectors are often not provided as raw data. Furthermore, the method's initialization has been shown to play a crucial role for surface reconstruction. In this paper, we propose a divergence guided shape representation learning approach that does not require normal vectors as input. We show that incorporating a soft constraint on the divergence of the distance function favours smooth solutions that reliably orients gradients to match the unknown normal at each point, in some cases even better than approaches that use ground truth normal vectors directly. Additionally, we introduce a novel geometric initialization method for sinusoidal INRs that further improves convergence to the desired solution. We evaluate the effectiveness of our approach on the task of surface reconstruction and shape space learning and show SOTA performance compared to other unoriented methods. Code and model parameters available at our project page //chumbyte.github.io/DiGS-Site/.
Conventionally, spatiotemporal modeling network and its complexity are the two most concentrated research topics in video action recognition. Existing state-of-the-art methods have achieved excellent accuracy regardless of the complexity meanwhile efficient spatiotemporal modeling solutions are slightly inferior in performance. In this paper, we attempt to acquire both efficiency and effectiveness simultaneously. First of all, besides traditionally treating H x W x T video frames as space-time signal (viewing from the Height-Width spatial plane), we propose to also model video from the other two Height-Time and Width-Time planes, to capture the dynamics of video thoroughly. Secondly, our model is designed based on 2D CNN backbones and model complexity is well kept in mind by design. Specifically, we introduce a novel multi-view fusion (MVF) module to exploit video dynamics using separable convolution for efficiency. It is a plug-and-play module and can be inserted into off-the-shelf 2D CNNs to form a simple yet effective model called MVFNet. Moreover, MVFNet can be thought of as a generalized video modeling framework and it can specialize to be existing methods such as C2D, SlowOnly, and TSM under different settings. Extensive experiments are conducted on popular benchmarks (i.e., Something-Something V1 & V2, Kinetics, UCF-101, and HMDB-51) to show its superiority. The proposed MVFNet can achieve state-of-the-art performance with 2D CNN's complexity.
Video captioning is a challenging task that requires a deep understanding of visual scenes. State-of-the-art methods generate captions using either scene-level or object-level information but without explicitly modeling object interactions. Thus, they often fail to make visually grounded predictions, and are sensitive to spurious correlations. In this paper, we propose a novel spatio-temporal graph model for video captioning that exploits object interactions in space and time. Our model builds interpretable links and is able to provide explicit visual grounding. To avoid unstable performance caused by the variable number of objects, we further propose an object-aware knowledge distillation mechanism, in which local object information is used to regularize global scene features. We demonstrate the efficacy of our approach through extensive experiments on two benchmarks, showing our approach yields competitive performance with interpretable predictions.
Object detection is an important and challenging problem in computer vision. Although the past decade has witnessed major advances in object detection in natural scenes, such successes have been slow to aerial imagery, not only because of the huge variation in the scale, orientation and shape of the object instances on the earth's surface, but also due to the scarcity of well-annotated datasets of objects in aerial scenes. To advance object detection research in Earth Vision, also known as Earth Observation and Remote Sensing, we introduce a large-scale Dataset for Object deTection in Aerial images (DOTA). To this end, we collect $2806$ aerial images from different sensors and platforms. Each image is of the size about 4000-by-4000 pixels and contains objects exhibiting a wide variety of scales, orientations, and shapes. These DOTA images are then annotated by experts in aerial image interpretation using $15$ common object categories. The fully annotated DOTA images contains $188,282$ instances, each of which is labeled by an arbitrary (8 d.o.f.) quadrilateral To build a baseline for object detection in Earth Vision, we evaluate state-of-the-art object detection algorithms on DOTA. Experiments demonstrate that DOTA well represents real Earth Vision applications and are quite challenging.