亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Information presented in Wikipedia articles must be attributable to reliable published sources in the form of references. This study examines over 5 million Wikipedia articles to assess the reliability of references in multiple language editions. We quantify the cross-lingual patterns of the perennial sources list, a collection of reliability labels for web domains identified and collaboratively agreed upon by Wikipedia editors. We discover that some sources (or web domains) deemed untrustworthy in one language (i.e., English) continue to appear in articles in other languages. This trend is especially evident with sources tailored for smaller communities. Furthermore, non-authoritative sources found in the English version of a page tend to persist in other language versions of that page. We finally present a case study on the Chinese, Russian, and Swedish Wikipedias to demonstrate a discrepancy in reference reliability across cultures. Our finding highlights future challenges in coordinating global knowledge on source reliability.

相關內容

 維基百科( )是一個基于 Wiki 技術的全球性多語言百科全書協作項目,同時也是一部在網際網絡上呈現的網絡百科全書網站,其目標及宗旨是為全人類提供自由的百科全書。目前 Alexa 全球網站排名第六。

This paper presents a scheme for annotating coreference across news articles, extending beyond traditional identity relations by also considering near-identity and bridging relations. It includes a precise description of how to set up Inception, a respective annotation tool, how to annotate entities in news articles, connect them with diverse coreferential relations, and link them across documents to Wikidata's global knowledge graph. This multi-layered annotation approach is discussed in the context of the problem of media bias. Our main contribution lies in providing a methodology for creating a diverse cross-document coreference corpus which can be applied to the analysis of media bias by word-choice and labelling.

Nested simulation encompasses the estimation of functionals linked to conditional expectations through simulation techniques. In this paper, we treat conditional expectation as a function of the multidimensional conditioning variable and provide asymptotic analyses of general Least Squared Estimators on sieve, without imposing specific assumptions on the function's form. Our study explores scenarios in which the convergence rate surpasses that of the standard Monte Carlo method and the one recently proposed based on kernel ridge regression. We also delve into the conditions that allow for achieving the best possible square root convergence rate among all methods. Numerical experiments are conducted to support our statements.

Data integration is considered a classic research field and a pressing need within the information science community. Ontologies play a critical role in such a process by providing well-consolidated support to link and semantically integrate datasets via interoperability. This paper approaches data integration from an application perspective, looking at techniques based on ontology matching. An ontology-based process may only be considered adequate by assuming manual matching of different sources of information. However, since the approach becomes unrealistic once the system scales up, automation of the matching process becomes a compelling need. Therefore, we have conducted experiments on actual data with the support of existing tools for automatic ontology matching from the scientific community. Even considering a relatively simple case study (i.e., the spatio-temporal alignment of global indicators), outcomes clearly show significant uncertainty resulting from errors and inaccuracies along the automated matching process. More concretely, this paper aims to test on real-world data a bottom-up knowledge-building approach, discuss the lessons learned from the experimental results of the case study, and draw conclusions about uncertainty and uncertainty management in an automated ontology matching process. While the most common evaluation metrics clearly demonstrate the unreliability of fully automated matching solutions, properly designed semi-supervised approaches seem to be mature for a more generalized application.

Multilingual large-scale Pretrained Language Models (PLMs) have been shown to store considerable amounts of factual knowledge, but large variations are observed across languages. With the ultimate goal of ensuring that users with different language backgrounds obtain consistent feedback from the same model, we study the cross-lingual consistency (CLC) of factual knowledge in various multilingual PLMs. To this end, we propose a Ranking-based Consistency (RankC) metric to evaluate knowledge consistency across languages independently from accuracy. Using this metric, we conduct an in-depth analysis of the determining factors for CLC, both at model level and at language-pair level. Among other results, we find that increasing model size leads to higher factual probing accuracy in most languages, but does not improve cross-lingual consistency. Finally, we conduct a case study on CLC when new factual associations are inserted in the PLMs via model editing. Results on a small sample of facts inserted in English reveal a clear pattern whereby the new piece of knowledge transfers only to languages with which English has a high RankC score.

Both accuracy and timeliness are key factors in detecting fake news on social media. However, most existing methods encounter an accuracy-timeliness dilemma: Content-only methods guarantee timeliness but perform moderately because of limited available information, while social context-based ones generally perform better but inevitably lead to latency because of social context accumulation needs. To break such a dilemma, a feasible but not well-studied solution is to leverage social contexts (e.g., comments) from historical news for training a detection model and apply it to newly emerging news without social contexts. This requires the model to (1) sufficiently learn helpful knowledge from social contexts, and (2) be well compatible with situations that social contexts are available or not. To achieve this goal, we propose to absorb and parameterize useful knowledge from comments in historical news and then inject it into a content-only detection model. Specifically, we design the Comments Assisted Fake News Detection method (CAS-FEND), which transfers useful knowledge from a comments-aware teacher model to a content-only student model during training. The student model is further used to detect newly emerging fake news. Experiments show that the CAS-FEND student model outperforms all content-only methods and even those with 1/4 comments as inputs, demonstrating its superiority for early detection.

This paper investigates the transferability of debiasing techniques across different languages within multilingual models. We examine the applicability of these techniques in English, French, German, and Dutch. Using multilingual BERT (mBERT), we demonstrate that cross-lingual transfer of debiasing techniques is not only feasible but also yields promising results. Surprisingly, our findings reveal no performance disadvantages when applying these techniques to non-English languages. Using translations of the CrowS-Pairs dataset, our analysis identifies SentenceDebias as the best technique across different languages, reducing bias in mBERT by an average of 13%. We also find that debiasing techniques with additional pretraining exhibit enhanced cross-lingual effectiveness for the languages included in the analyses, particularly in lower-resource languages. These novel insights contribute to a deeper understanding of bias mitigation in multilingual language models and provide practical guidance for debiasing techniques in different language contexts.

Social media platforms employ various content moderation techniques to remove harmful, offensive, and hate speech content. The moderation level varies across platforms; even over time, it can evolve in a platform. For example, Parler, a fringe social media platform popular among conservative users, was known to have the least restrictive moderation policies, claiming to have open discussion spaces for their users. However, after linking the 2021 US Capitol Riots and the activity of some groups on Parler, such as QAnon and Proud Boys, on January 12, 2021, Parler was removed from the Apple and Google App Store and suspended from Amazon Cloud hosting service. Parler would have to modify their moderation policies to return to these online stores. After a month of downtime, Parler was back online with a new set of user guidelines, which reflected stricter content moderation, especially regarding the \emph{hate speech} policy. In this paper, we studied the moderation changes performed by Parler and their effect on the toxicity of its content. We collected a large longitudinal Parler dataset with 17M parleys from 432K active users from February 2021 to January 2022, after its return to the Internet and App Store. To the best of our knowledge, this is the first study investigating the effectiveness of content moderation techniques using data-driven approaches and also the first Parler dataset after its brief hiatus. Our quasi-experimental time series analysis indicates that after the change in Parler's moderation, the severe forms of toxicity (above a threshold of 0.5) immediately decreased and sustained. In contrast, the trend did not change for less severe threats and insults (a threshold between 0.5 - 0.7). Finally, we found an increase in the factuality of the news sites being shared, as well as a decrease in the number of conspiracy or pseudoscience sources being shared.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.

Deep convolutional neural networks (CNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past few years, tremendous progress has been made in this area. In this paper, we survey the recent advanced techniques for compacting and accelerating CNNs model developed. These techniques are roughly categorized into four schemes: parameter pruning and sharing, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and sharing will be described at the beginning, after that the other techniques will be introduced. For each scheme, we provide insightful analysis regarding the performance, related applications, advantages, and drawbacks etc. Then we will go through a few very recent additional successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrix, the main datasets used for evaluating the model performance and recent benchmarking efforts. Finally, we conclude this paper, discuss remaining challenges and possible directions on this topic.

北京阿比特科技有限公司