It is a well-known approach for fringe groups and organizations to use euphemisms -- ordinary-sounding and innocent-looking words with a secret meaning -- to conceal what they are discussing. For instance, drug dealers often use "pot" for marijuana and "avocado" for heroin. From a social media content moderation perspective, though recent advances in NLP have enabled the automatic detection of such single-word euphemisms, no existing work is capable of automatically detecting multi-word euphemisms, such as "blue dream" (marijuana) and "black tar" (heroin). Our paper tackles the problem of euphemistic phrase detection without human effort for the first time, as far as we are aware. We first perform phrase mining on a raw text corpus (e.g., social media posts) to extract quality phrases. Then, we utilize word embedding similarities to select a set of euphemistic phrase candidates. Finally, we rank those candidates by a masked language model -- SpanBERT. Compared to strong baselines, we report 20-50% higher detection accuracies using our algorithm for detecting euphemistic phrases.
The enormous amount of data being generated on the web and social media has increased the demand for detecting online hate speech. Detecting hate speech will reduce their negative impact and influence on others. A lot of effort in the Natural Language Processing (NLP) domain aimed to detect hate speech in general or detect specific hate speech such as religion, race, gender, or sexual orientation. Hate communities tend to use abbreviations, intentional spelling mistakes, and coded words in their communication to evade detection, adding more challenges to hate speech detection tasks. Thus, word representation will play an increasingly pivotal role in detecting hate speech. This paper investigates the feasibility of leveraging domain-specific word embedding in Bidirectional LSTM based deep model to automatically detect/classify hate speech. Furthermore, we investigate the use of the transfer learning language model (BERT) on hate speech problem as a binary classification task. The experiments showed that domainspecific word embedding with the Bidirectional LSTM based deep model achieved a 93% f1-score while BERT achieved up to 96% f1-score on a combined balanced dataset from available hate speech datasets.
The largest dataset of Arabic speech mispronunciation detections in Egyptian dialogues is introduced. The dataset is composed of annotated audio files representing the top 100 words that are most frequently used in the Arabic language, pronounced by 100 Egyptian children (aged between 2 and 8 years old). The dataset is collected and annotated on segmental pronunciation error detections by expert listeners.
The recognition of hate speech and offensive language (HOF) is commonly formulated as a classification task to decide if a text contains HOF. We investigate whether HOF detection can profit by taking into account the relationships between HOF and similar concepts: (a) HOF is related to sentiment analysis because hate speech is typically a negative statement and expresses a negative opinion; (b) it is related to emotion analysis, as expressed hate points to the author experiencing (or pretending to experience) anger while the addressees experience (or are intended to experience) fear. (c) Finally, one constituting element of HOF is the mention of a targeted person or group. On this basis, we hypothesize that HOF detection shows improvements when being modeled jointly with these concepts, in a multi-task learning setup. We base our experiments on existing data sets for each of these concepts (sentiment, emotion, target of HOF) and evaluate our models as a participant (as team IMS-SINAI) in the HASOC FIRE 2021 English Subtask 1A. Based on model-selection experiments in which we consider multiple available resources and submissions to the shared task, we find that the combination of the CrowdFlower emotion corpus, the SemEval 2016 Sentiment Corpus, and the OffensEval 2019 target detection data leads to an F1 =.79 in a multi-head multi-task learning model based on BERT, in comparison to .7895 of plain BERT. On the HASOC 2019 test data, this result is more substantial with an increase by 2pp in F1 and a considerable increase in recall. Across both data sets (2019, 2021), the recall is particularly increased for the class of HOF (6pp for the 2019 data and 3pp for the 2021 data), showing that MTL with emotion, sentiment, and target identification is an appropriate approach for early warning systems that might be deployed in social media platforms.
This paper presents Pix2Seq, a simple and generic framework for object detection. Unlike existing approaches that explicitly integrate prior knowledge about the task, we simply cast object detection as a language modeling task conditioned on the observed pixel inputs. Object descriptions (e.g., bounding boxes and class labels) are expressed as sequences of discrete tokens, and we train a neural net to perceive the image and generate the desired sequence. Our approach is based mainly on the intuition that if a neural net knows about where and what the objects are, we just need to teach it how to read them out. Beyond the use of task-specific data augmentations, our approach makes minimal assumptions about the task, yet it achieves competitive results on the challenging COCO dataset, compared to highly specialized and well optimized detection algorithms.
Object detection, as of one the most fundamental and challenging problems in computer vision, has received great attention in recent years. Its development in the past two decades can be regarded as an epitome of computer vision history. If we think of today's object detection as a technical aesthetics under the power of deep learning, then turning back the clock 20 years we would witness the wisdom of cold weapon era. This paper extensively reviews 400+ papers of object detection in the light of its technical evolution, spanning over a quarter-century's time (from the 1990s to 2019). A number of topics have been covered in this paper, including the milestone detectors in history, detection datasets, metrics, fundamental building blocks of the detection system, speed up techniques, and the recent state of the art detection methods. This paper also reviews some important detection applications, such as pedestrian detection, face detection, text detection, etc, and makes an in-deep analysis of their challenges as well as technical improvements in recent years.
Generic object detection, aiming at locating object instances from a large number of predefined categories in natural images, is one of the most fundamental and challenging problems in computer vision. Deep learning techniques have emerged in recent years as powerful methods for learning feature representations directly from data, and have led to remarkable breakthroughs in the field of generic object detection. Given this time of rapid evolution, the goal of this paper is to provide a comprehensive survey of the recent achievements in this field brought by deep learning techniques. More than 250 key contributions are included in this survey, covering many aspects of generic object detection research: leading detection frameworks and fundamental subproblems including object feature representation, object proposal generation, context information modeling and training strategies; evaluation issues, specifically benchmark datasets, evaluation metrics, and state of the art performance. We finish by identifying promising directions for future research.
We propose a two-stage neural model to tackle question generation from documents. First, our model estimates the probability that word sequences in a document are ones that a human would pick when selecting candidate answers by training a neural key-phrase extractor on the answers in a question-answering corpus. Predicted key phrases then act as target answers and condition a sequence-to-sequence question-generation model with a copy mechanism. Empirically, our key-phrase extraction model significantly outperforms an entity-tagging baseline and existing rule-based approaches. We further demonstrate that our question generation system formulates fluent, answerable questions from key phrases. This two-stage system could be used to augment or generate reading comprehension datasets, which may be leveraged to improve machine reading systems or in educational settings.
We propose the idea of transferring common-sense knowledge from source categories to target categories for scalable object detection. In our setting, the training data for the source categories have bounding box annotations, while those for the target categories only have image-level annotations. Current state-of-the-art approaches focus on image-level visual or semantic similarity to adapt a detector trained on the source categories to the new target categories. In contrast, our key idea is to (i) use similarity not at image-level, but rather at region-level, as well as (ii) leverage richer common-sense (based on attribute, spatial, etc.,) to guide the algorithm towards learning the correct detections. We acquire such common-sense cues automatically from readily-available knowledge bases without any extra human effort. On the challenging MS COCO dataset, we find that using common-sense knowledge substantially improves detection performance over existing transfer-learning baselines.
Can we detect common objects in a variety of image domains without instance-level annotations? In this paper, we present a framework for a novel task, cross-domain weakly supervised object detection, which addresses this question. For this paper, we have access to images with instance-level annotations in a source domain (e.g., natural image) and images with image-level annotations in a target domain (e.g., watercolor). In addition, the classes to be detected in the target domain are all or a subset of those in the source domain. Starting from a fully supervised object detector, which is pre-trained on the source domain, we propose a two-step progressive domain adaptation technique by fine-tuning the detector on two types of artificially and automatically generated samples. We test our methods on our newly collected datasets containing three image domains, and achieve an improvement of approximately 5 to 20 percentage points in terms of mean average precision (mAP) compared to the best-performing baselines.
Reasoning about the relationships between object pairs in images is a crucial task for holistic scene understanding. Most of the existing works treat this task as a pure visual classification task: each type of relationship or phrase is classified as a relation category based on the extracted visual features. However, each kind of relationships has a wide variety of object combination and each pair of objects has diverse interactions. Obtaining sufficient training samples for all possible relationship categories is difficult and expensive. In this work, we propose a natural language guided framework to tackle this problem. We propose to use a generic bi-directional recurrent neural network to predict the semantic connection between the participating objects in the relationship from the aspect of natural language. The proposed simple method achieves the state-of-the-art on the Visual Relationship Detection (VRD) and Visual Genome datasets, especially when predicting unseen relationships (e.g. recall improved from 76.42% to 89.79% on VRD zero-shot testing set).