OpenAI has released the Chat Generative Pre-trained Transformer (ChatGPT) and revolutionized the approach in artificial intelligence to human-model interaction. Several publications on ChatGPT evaluation test its effectiveness on well-known natural language processing (NLP) tasks. However, the existing studies are mostly non-automated and tested on a very limited scale. In this work, we examined ChatGPT's capabilities on 25 diverse analytical NLP tasks, most of them subjective even to humans, such as sentiment analysis, emotion recognition, offensiveness, and stance detection. In contrast, the other tasks require more objective reasoning like word sense disambiguation, linguistic acceptability, and question answering. We also evaluated GPT-4 model on five selected subsets of NLP tasks. We automated ChatGPT and GPT-4 prompting process and analyzed more than 49k responses. Our comparison of its results with available State-of-the-Art (SOTA) solutions showed that the average loss in quality of the ChatGPT model was about 25% for zero-shot and few-shot evaluation. For GPT-4 model, a loss for semantic tasks is significantly lower than for ChatGPT. We showed that the more difficult the task (lower SOTA performance), the higher the ChatGPT loss. It especially refers to pragmatic NLP problems like emotion recognition. We also tested the ability to personalize ChatGPT responses for selected subjective tasks via Random Contextual Few-Shot Personalization, and we obtained significantly better user-based predictions. Additional qualitative analysis revealed a ChatGPT bias, most likely due to the rules imposed on human trainers by OpenAI. Our results provide the basis for a fundamental discussion of whether the high quality of recent predictive NLP models can indicate a tool's usefulness to society and how the learning and validation procedures for such systems should be established.
Property-based testing (PBT), while an established technique in the software testing research community, is still relatively underused in real-world software. Pain points in writing property-based tests include implementing diverse random input generators and thinking of meaningful properties to test. Developers, however, are more amenable to writing documentation; plenty of library API documentation is available and can be used as natural language specifications for property-based tests. As large language models (LLMs) have recently shown promise in a variety of coding tasks, we explore the potential of using LLMs to synthesize property-based tests. We call our approach PBT-GPT, and propose three different strategies of prompting the LLM for PBT. We characterize various failure modes of PBT-GPT and detail an evaluation methodology for automatically synthesized property-based tests. PBT-GPT achieves promising results in our preliminary studies on sample Python library APIs in $\texttt{numpy}$, $\texttt{networkx}$, and $\texttt{datetime}$.
ASR error correction continues to serve as an important part of post-processing for speech recognition systems. Traditionally, these models are trained with supervised training using the decoding results of the underlying ASR system and the reference text. This approach is computationally intensive and the model needs to be re-trained when switching the underlying ASR model. Recent years have seen the development of large language models and their ability to perform natural language processing tasks in a zero-shot manner. In this paper, we take ChatGPT as an example to examine its ability to perform ASR error correction in the zero-shot or 1-shot settings. We use the ASR N-best list as model input and propose unconstrained error correction and N-best constrained error correction methods. Results on a Conformer-Transducer model and the pre-trained Whisper model show that we can largely improve the ASR system performance with error correction using the powerful ChatGPT model.
In recent years, personality has been regarded as a valuable personal factor being incorporated into numerous tasks such as sentiment analysis and product recommendation. This has led to widespread attention to text-based personality recognition task, which aims to identify an individual's personality based on given text. Considering that ChatGPT has recently exhibited remarkable abilities on various natural language processing tasks, we provide a preliminary evaluation of ChatGPT on text-based personality recognition task for generating effective personality data. Concretely, we employ a variety of prompting strategies to explore ChatGPT's ability in recognizing personality from given text, especially the level-oriented prompting strategy we designed for guiding ChatGPT in analyzing given text at a specified level. We compare the performance of ChatGPT on two representative real-world datasets with traditional neural network, fine-tuned RoBERTa, and corresponding state-of-the-art task-specific model. The experimental results show that ChatGPT with zero-shot chain-of-thought prompting exhibits impressive personality recognition ability. Triggered by zero-shot chain-of-thought prompting, ChatGPT outperforms fine-tuned RoBERTa on the two datasets and is capable to provide natural language explanations through text-based logical reasoning. Furthermore, relative to zero-shot chain-of-thought prompting, zero-shot level-oriented chain-of-thought prompting enhances the personality prediction ability of ChatGPT and reduces the performance gap between ChatGPT and corresponding state-of-the-art task-specific model. Besides, we also conduct experiments to observe the fairness of ChatGPT when identifying personality and discover that ChatGPT shows unfairness to some sensitive demographic attributes such as gender and age.
We introduce LyricWhiz, a robust, multilingual, and zero-shot automatic lyrics transcription method achieving state-of-the-art performance on various lyrics transcription datasets, even in challenging genres such as rock and metal. Our novel, training-free approach utilizes Whisper, a weakly supervised robust speech recognition model, and GPT-4, today's most performant chat-based large language model. In the proposed method, Whisper functions as the "ear" by transcribing the audio, while GPT-4 serves as the "brain," acting as an annotator with a strong performance for contextualized output selection and correction. Our experiments show that LyricWhiz significantly reduces Word Error Rate compared to existing methods in English and can effectively transcribe lyrics across multiple languages. Furthermore, we use LyricWhiz to create the first publicly available, large-scale, multilingual lyrics transcription dataset with a CC-BY-NC-SA copyright license, based on MTG-Jamendo, and offer a human-annotated subset for noise level estimation and evaluation. We anticipate that our proposed method and dataset will advance the development of multilingual lyrics transcription, a challenging and emerging task.
We employ pressure point analysis and roofline modeling to identify performance bottlenecks and determine an upper bound on the performance of the Canonical Polyadic Alternating Poisson Regression Multiplicative Update (CP-APR MU) algorithm in the SparTen software library. Our analyses reveal that a particular matrix computation, $\Phi^{(n)}$, is the critical performance bottleneck in the SparTen CP-APR MU implementation. Moreover, we find that atomic operations are not a critical bottleneck while higher cache reuse can provide a non-trivial performance improvement. We also utilize grid search on the Kokkos library parallel policy parameters to achieve 2.25x average speedup over the SparTen default for $\Phi^{(n)}$ computation on CPU and 1.70x on GPU. We conclude our investigations by comparing Kokkos implementations of the STREAM benchmark and the matricized tensor times Khatri-Rao product (MTTKRP) benchmark from the Parallel Sparse Tensor Algorithm (PASTA) benchmark suite to implementations using vendor libraries. We show that with a single implementation Kokkos achieves performance comparable to hand-tuned code for fundamental operations that make up tensor decomposition kernels on a wide range of CPU and GPU systems. Overall, we conclude that Kokkos demonstrates good performance portability for simple data-intensive operations but requires tuning for algorithms with more complex dependencies and data access patterns.
Lexical matching remains the de facto evaluation method for open-domain question answering (QA). Unfortunately, lexical matching fails completely when a plausible candidate answer does not appear in the list of gold answers, which is increasingly the case as we shift from extractive to generative models. The recent success of large language models (LLMs) for QA aggravates lexical matching failures since candidate answers become longer, thereby making matching with the gold answers even more challenging. Without accurate evaluation, the true progress in open-domain QA remains unknown. In this paper, we conduct a thorough analysis of various open-domain QA models, including LLMs, by manually evaluating their answers on a subset of NQ-open, a popular benchmark. Our assessments reveal that while the true performance of all models is significantly underestimated, the performance of the InstructGPT (zero-shot) LLM increases by nearly +60%, making it on par with existing top models, and the InstructGPT (few-shot) model actually achieves a new state-of-the-art on NQ-open. We also find that more than 50% of lexical matching failures are attributed to semantically equivalent answers. We further demonstrate that regex matching ranks QA models consistent with human judgments, although still suffering from unnecessary strictness. Finally, we demonstrate that automated evaluation models are a reasonable surrogate for lexical matching in some circumstances, but not for long-form answers generated by LLMs. The automated models struggle in detecting hallucinations in LLM answers and are thus unable to evaluate LLMs. At this time, there appears to be no substitute for human evaluation.
We propose Prefix-Adaptive Decoding (PREADD), a flexible method for controlled text generation. Unlike existing methods that use auxiliary expert models to control for attributes, PREADD does not require an external model, instead relying on linearly combining output logits from multiple prompts. Specifically, PREADD contrasts the output logits generated using a raw prompt against those generated using a prefix-prepended prompt, enabling both positive and negative control with respect to any attribute encapsulated by the prefix. We evaluate PREADD on three tasks -- toxic output mitigation, gender bias reduction, and sentiment control -- and find that PREADD outperforms not only prompting baselines, but also an auxiliary-expert control method, by 12% or more in relative gain on our main metrics for each task.
This paper presents a comprehensive and practical guide for practitioners and end-users working with Large Language Models (LLMs) in their downstream natural language processing (NLP) tasks. We provide discussions and insights into the usage of LLMs from the perspectives of models, data, and downstream tasks. Firstly, we offer an introduction and brief summary of current GPT- and BERT-style LLMs. Then, we discuss the influence of pre-training data, training data, and test data. Most importantly, we provide a detailed discussion about the use and non-use cases of large language models for various natural language processing tasks, such as knowledge-intensive tasks, traditional natural language understanding tasks, natural language generation tasks, emergent abilities, and considerations for specific tasks.We present various use cases and non-use cases to illustrate the practical applications and limitations of LLMs in real-world scenarios. We also try to understand the importance of data and the specific challenges associated with each NLP task. Furthermore, we explore the impact of spurious biases on LLMs and delve into other essential considerations, such as efficiency, cost, and latency, to ensure a comprehensive understanding of deploying LLMs in practice. This comprehensive guide aims to provide researchers and practitioners with valuable insights and best practices for working with LLMs, thereby enabling the successful implementation of these models in a wide range of NLP tasks. A curated list of practical guide resources of LLMs, regularly updated, can be found at \url{//github.com/Mooler0410/LLMsPracticalGuide}.
Transformer-based pretrained language models (T-PTLMs) have achieved great success in almost every NLP task. The evolution of these models started with GPT and BERT. These models are built on the top of transformers, self-supervised learning and transfer learning. Transformed-based PTLMs learn universal language representations from large volumes of text data using self-supervised learning and transfer this knowledge to downstream tasks. These models provide good background knowledge to downstream tasks which avoids training of downstream models from scratch. In this comprehensive survey paper, we initially give a brief overview of self-supervised learning. Next, we explain various core concepts like pretraining, pretraining methods, pretraining tasks, embeddings and downstream adaptation methods. Next, we present a new taxonomy of T-PTLMs and then give brief overview of various benchmarks including both intrinsic and extrinsic. We present a summary of various useful libraries to work with T-PTLMs. Finally, we highlight some of the future research directions which will further improve these models. We strongly believe that this comprehensive survey paper will serve as a good reference to learn the core concepts as well as to stay updated with the recent happenings in T-PTLMs.
Since hardware resources are limited, the objective of training deep learning models is typically to maximize accuracy subject to the time and memory constraints of training and inference. We study the impact of model size in this setting, focusing on Transformer models for NLP tasks that are limited by compute: self-supervised pretraining and high-resource machine translation. We first show that even though smaller Transformer models execute faster per iteration, wider and deeper models converge in significantly fewer steps. Moreover, this acceleration in convergence typically outpaces the additional computational overhead of using larger models. Therefore, the most compute-efficient training strategy is to counterintuitively train extremely large models but stop after a small number of iterations. This leads to an apparent trade-off between the training efficiency of large Transformer models and the inference efficiency of small Transformer models. However, we show that large models are more robust to compression techniques such as quantization and pruning than small models. Consequently, one can get the best of both worlds: heavily compressed, large models achieve higher accuracy than lightly compressed, small models.