亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Decentralized Federated Learning (FL) has attracted significant attention due to its enhanced robustness and scalability compared to its centralized counterpart. It pivots on peer-to-peer communication rather than depending on a central server for model aggregation. While prior research has delved into various factors of decentralized FL such as aggregation methods and privacy-preserving techniques, one crucial aspect affecting privacy is relatively unexplored: the underlying graph topology. In this paper, we fill the gap by deriving a stringent privacy bound for decentralized FL under the condition that the accuracy is not compromised, highlighting the pivotal role of graph topology. Specifically, we demonstrate that the minimum privacy loss at each model aggregation step is dependent on the size of what we term as 'honest components', the maximally connected subgraphs once all untrustworthy participants are excluded from the networks, which is closely tied to network robustness. Our analysis suggests that attack-resilient networks will provide a superior privacy guarantee. We further validate this by studying both Poisson and power law networks, showing that the latter, being less robust against attacks, indeed reveals more privacy. In addition to a theoretical analysis, we consolidate our findings by examining two distinct privacy attacks: membership inference and gradient inversion.

相關內容

Code switching (CS) is a very common phenomenon in written and spoken communication but one that is handled poorly by many natural language processing applications. Looking to the application of building CS corpora, we explore CS language identification (LID) for corpus building. We make the task more realistic by scaling it to more languages and considering models with simpler architectures for faster inference. We also reformulate the task as a sentence-level multi-label tagging problem to make it more tractable. Having defined the task, we investigate three reasonable models for this task and define metrics which better reflect desired performance. We present empirical evidence that no current approach is adequate and finally provide recommendations for future work in this area.

Due to strong capabilities in conducting fluent, multi-turn conversations with users, Large Language Models (LLMs) have the potential to further improve the performance of Conversational Recommender System (CRS). Unlike the aimless chit-chat that LLM excels at, CRS has a clear target. So it is imperative to control the dialogue flow in the LLM to successfully recommend appropriate items to the users. Furthermore, user feedback in CRS can assist the system in better modeling user preferences, which has been ignored by existing studies. However, simply prompting LLM to conduct conversational recommendation cannot address the above two key challenges. In this paper, we propose Multi-Agent Conversational Recommender System (MACRS) which contains two essential modules. First, we design a multi-agent act planning framework, which can control the dialogue flow based on four LLM-based agents. This cooperative multi-agent framework will generate various candidate responses based on different dialogue acts and then choose the most appropriate response as the system response, which can help MACRS plan suitable dialogue acts. Second, we propose a user feedback-aware reflection mechanism which leverages user feedback to reason errors made in previous turns to adjust the dialogue act planning, and higher-level user information from implicit semantics. We conduct extensive experiments based on user simulator to demonstrate the effectiveness of MACRS in recommendation and user preferences collection. Experimental results illustrate that MACRS demonstrates an improvement in user interaction experience compared to directly using LLMs.

Primal-dual methods have a natural application in Safe Reinforcement Learning (SRL), posed as a constrained policy optimization problem. In practice however, applying primal-dual methods to SRL is challenging, due to the inter-dependency of the learning rate (LR) and Lagrangian multipliers (dual variables) each time an embedded unconstrained RL problem is solved. In this paper, we propose, analyze and evaluate adaptive primal-dual (APD) methods for SRL, where two adaptive LRs are adjusted to the Lagrangian multipliers so as to optimize the policy in each iteration. We theoretically establish the convergence, optimality and feasibility of the APD algorithm. Finally, we conduct numerical evaluation of the practical APD algorithm with four well-known environments in Bullet-Safey-Gym employing two state-of-the-art SRL algorithms: PPO-Lagrangian and DDPG-Lagrangian. All experiments show that the practical APD algorithm outperforms (or achieves comparable performance) and attains more stable training than the constant LR cases. Additionally, we substantiate the robustness of selecting the two adaptive LRs by empirical evidence.

Explainable artificial intelligence (XAI) has witnessed significant advances in the field of object recognition, with saliency maps being used to highlight image features relevant to the predictions of learned models. Although these advances have made AI-based technology more interpretable to humans, several issues have come to light. Some approaches present explanations irrelevant to predictions, and cannot guarantee the validity of XAI (axioms). In this study, we propose the Baseline Shapley-based Explainable Detector (BSED), which extends the Shapley value to object detection, thereby enhancing the validity of interpretation. The Shapley value can attribute the prediction of a learned model to a baseline feature while satisfying the explainability axioms. The processing cost for the BSED is within the reasonable range, while the original Shapley value is prohibitively computationally expensive. Furthermore, BSED is a generalizable method that can be applied to various detectors in a model-agnostic manner, and interpret various detection targets without fine-grained parameter tuning. These strengths can enable the practical applicability of XAI. We present quantitative and qualitative comparisons with existing methods to demonstrate the superior performance of our method in terms of explanation validity. Moreover, we present some applications, such as correcting detection based on explanations from our method.

The fine-tuning of Large Language Models (LLMs) has enabled them to recently achieve milestones in natural language processing applications. The emergence of ever larger LLMs has paved the way for more efficient fine-tuning methods. Among these, the Low-Rank Adaptation (LoRA) method keeps most of the weights of the pre-trained LLM frozen while introducing a low-rank decomposition of the weight matrix, enabling the tuning of only a very small proportion of the network. The performance on downstream tasks of models fine-tuned with LoRA heavily relies on a set of hyperparameters including the rank of the decomposition. In this work, we investigate the choice of these hyperparameters through two main blackbox optimization (BBO) techniques. We examine the whole pipeline of performing fine-tuning and validation on a pre-trained LLM as a blackbox and efficiently explore the space of hyperparameters with the \nomad algorithm, achieving a boost in performance and human alignment of the tuned model.

Graph Convolutional Network (GCN) has achieved extraordinary success in learning effective task-specific representations of nodes in graphs. However, regarding Heterogeneous Information Network (HIN), existing HIN-oriented GCN methods still suffer from two deficiencies: (1) they cannot flexibly explore all possible meta-paths and extract the most useful ones for a target object, which hinders both effectiveness and interpretability; (2) they often need to generate intermediate meta-path based dense graphs, which leads to high computational complexity. To address the above issues, we propose an interpretable and efficient Heterogeneous Graph Convolutional Network (ie-HGCN) to learn the representations of objects in HINs. It is designed as a hierarchical aggregation architecture, i.e., object-level aggregation first, followed by type-level aggregation. The novel architecture can automatically extract useful meta-paths for each object from all possible meta-paths (within a length limit), which brings good model interpretability. It can also reduce the computational cost by avoiding intermediate HIN transformation and neighborhood attention. We provide theoretical analysis about the proposed ie-HGCN in terms of evaluating the usefulness of all possible meta-paths, its connection to the spectral graph convolution on HINs, and its quasi-linear time complexity. Extensive experiments on three real network datasets demonstrate the superiority of ie-HGCN over the state-of-the-art methods.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Graph Neural Networks (GNN) has demonstrated the superior performance in many challenging applications, including the few-shot learning tasks. Despite its powerful capacity to learn and generalize from few samples, GNN usually suffers from severe over-fitting and over-smoothing as the model becomes deep, which limit the model scalability. In this work, we propose a novel Attentive GNN to tackle these challenges, by incorporating a triple-attention mechanism, \ie node self-attention, neighborhood attention, and layer memory attention. We explain why the proposed attentive modules can improve GNN for few-shot learning with theoretical analysis and illustrations. Extensive experiments show that the proposed Attentive GNN outperforms the state-of-the-art GNN-based methods for few-shot learning over the mini-ImageNet and Tiered-ImageNet datasets, with both inductive and transductive settings.

Graph Convolutional Networks (GCNs) have received increasing attention in recent machine learning. How to effectively leverage the rich structural information in complex graphs, such as knowledge graphs with heterogeneous types of entities and relations, is a primary open challenge in the field. Most GCN methods are either restricted to graphs with a homogeneous type of edges (e.g., citation links only), or focusing on representation learning for nodes only instead of jointly optimizing the embeddings of both nodes and edges for target-driven objectives. This paper addresses these limitations by proposing a novel framework, namely the GEneralized Multi-relational Graph Convolutional Networks (GEM-GCN), which combines the power of GCNs in graph-based belief propagation and the strengths of advanced knowledge-base embedding methods, and goes beyond. Our theoretical analysis shows that GEM-GCN offers an elegant unification of several well-known GCN methods as specific cases, with a new perspective of graph convolution. Experimental results on benchmark datasets show the advantageous performance of GEM-GCN over strong baseline methods in the tasks of knowledge graph alignment and entity classification.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司