亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The state-of-the-art approach for semi-supervised anomalous sound detection is to first learn an embedding space by using auxiliary classification tasks based on meta information or self-supervised learning and then estimate the distribution of normal data. In this work, AdaProj a novel loss function is presented. In contrast to commonly used angular margin losses, which project data of each class as close as possible to their corresponding class centers, AdaProj learns to project data onto class-specific subspaces. By doing so, the resulting distributions of embeddings belonging to normal data are not required to be as restrictive as other loss functions allowing a more detailed view on the data. In experiments conducted on the DCASE2022 and DCASE2023 datasets, it is shown that using AdaProj to learn an embedding space significantly outperforms other commonly used loss functions and results in a state-of-the-art performance on the DCASE2023 dataset.

相關內容

損(sun)失函(han)數,在AI中亦稱呼距離函(han)數,度(du)(du)量函(han)數。此處(chu)的距離代(dai)(dai)表(biao)的是(shi)抽象性的,代(dai)(dai)表(biao)真實(shi)數據與預測數據之間的誤(wu)差。損(sun)失函(han)數(loss function)是(shi)用來(lai)估量你模型的預測值f(x)與真實(shi)值Y的不一(yi)致程度(du)(du),它是(shi)一(yi)個非負實(shi)值函(han)數,通常(chang)使用L(Y, f(x))來(lai)表(biao)示,損(sun)失函(han)數越小,模型的魯棒性就越好。損(sun)失函(han)數是(shi)經驗風(feng)(feng)險函(han)數的核心部分,也是(shi)結(jie)構風(feng)(feng)險函(han)數重要組成部分。

Understanding the location of ultra-wideband (UWB) tag-attached objects and people in the real world is vital to enabling a smooth cyber-physical transition. However, most UWB localization systems today require multiple anchors in the environment, which can be very cumbersome to set up. In this work, we develop XRLoc, providing an accuracy of a few centimeters in many real-world scenarios. This paper will delineate the key ideas which allow us to overcome the fundamental restrictions that plague a single anchor point from localization of a device to within an error of a few centimeters. We deploy a VR chess game using everyday objects as a demo and find that our system achieves $2.4$ cm median accuracy and $5.3$ cm $90^\mathrm{th}$ percentile accuracy in dynamic scenarios, performing at least $8\times$ better than state-of-art localization systems. Additionally, we implement a MAC protocol to furnish these locations for over $10$ tags at update rates of $100$ Hz, with a localization latency of $\sim 1$ ms.

The vision for 6G extends beyond mere communication, incorporating sensing capabilities to facilitate a diverse array of novel applications and services. However, the advent of joint communication and sensing (JCAS) technology introduces concerns regarding the handling of sensitive personally identifiable information (PII) pertaining to individuals and objects, along with external third-party data and disclosure. Consequently, JCAS-based applications are susceptible to privacy breaches, including location tracking, identity disclosure, profiling, and misuse of sensor data, raising significant implications under the European Union's General Data Protection Regulation (GDPR) as well as other applicable standards. This paper critically examines emergent JCAS architectures and underscores the necessity for network functions to enable privacy-specific features in the 6G systems. We propose an enhanced JCAS architecture with additional network functions and interfaces, facilitating the management of sensing policies, consent information, and transparency guidelines, alongside the integration of sensing-specific functions and storage for sensing processing sessions. Furthermore, we conduct a comprehensive threat analysis for all interfaces, employing security threat model STRIDE and privacy threat model LINDDUN. We also summarise the identified threats using standard Common Weakness Enumerations (CWEs). Finally, we suggest the security and privacy controls as the mitigating strategies to counter the identified threats stemming from the JCAS architecture.

Deterministic and nondeterministic finite automata (DFAs and NFAs) are abstract models of computation commonly taught in introductory computing theory courses. These models have important applications (such as fast regular expression matching), and are used to introduce formal language theory. Undergraduate students often struggle with understanding these models at first, due to the level of abstraction. As a result, various pedagogical tools have been developed to allow students to practice with these models. We introduce the FSM Builder, a new pedagogical tool enabling students to practice constructing DFAs and NFAs with a graphical editor, giving personalized feedback and partial credit. The algorithms used for generating these are heavily inspired by previous works. The key advantages to its competitors are greater flexibility and scalability. This is because the FSM Builder is implemented using efficient algorithms from an open source package, allowing for easy extension and question creation. We discuss the implementation of the tool, how it stands out from previous tools, and takeaways from experiences of using the tool in multiple large courses. Survey results indicate the interface and feedback provided by the tool were useful to students.

Varied approaches for aligning language models have been proposed, including supervised fine-tuning, RLHF, and direct optimization methods such as DPO. Although DPO has rapidly gained popularity due to its straightforward training process and competitive results, there is an open question of whether there remain practical advantages of using a discriminator, like a reward model, to evaluate responses. We propose D2PO, discriminator-guided DPO, an approach for the online setting where preferences are being collected throughout learning. As we collect gold preferences, we use these not only to train our policy, but to train a discriminative response evaluation model to silver-label even more synthetic data for policy training. We explore this approach across a set of diverse tasks, including a realistic chat setting, we find that our approach leads to higher-quality outputs compared to DPO with the same data budget, and greater efficiency in terms of preference data requirements. Furthermore, we show conditions under which silver labeling is most helpful: it is most effective when training the policy with DPO, outperforming traditional PPO, and benefits from maintaining a separate discriminator from the policy model.

Transformer-based entropy models have gained prominence in recent years due to their superior ability to capture long-range dependencies in probability distribution estimation compared to convolution-based methods. However, previous transformer-based entropy models suffer from a sluggish coding process due to pixel-wise autoregression or duplicated computation during inference. In this paper, we propose a novel transformer-based entropy model called GroupedMixer, which enjoys both faster coding speed and better compression performance than previous transformer-based methods. Specifically, our approach builds upon group-wise autoregression by first partitioning the latent variables into groups along spatial-channel dimensions, and then entropy coding the groups with the proposed transformer-based entropy model. The global causal self-attention is decomposed into more efficient group-wise interactions, implemented using inner-group and cross-group token-mixers. The inner-group token-mixer incorporates contextual elements within a group while the cross-group token-mixer interacts with previously decoded groups. Alternate arrangement of two token-mixers enables global contextual reference. To further expedite the network inference, we introduce context cache optimization to GroupedMixer, which caches attention activation values in cross-group token-mixers and avoids complex and duplicated computation. Experimental results demonstrate that the proposed GroupedMixer yields the state-of-the-art rate-distortion performance with fast compression speed.

An accurate detection and tracking of devices such as guiding catheters in live X-ray image acquisitions is an essential prerequisite for endovascular cardiac interventions. This information is leveraged for procedural guidance, e.g., directing stent placements. To ensure procedural safety and efficacy, there is a need for high robustness no failures during tracking. To achieve that, one needs to efficiently tackle challenges, such as: device obscuration by contrast agent or other external devices or wires, changes in field-of-view or acquisition angle, as well as the continuous movement due to cardiac and respiratory motion. To overcome the aforementioned challenges, we propose a novel approach to learn spatio-temporal features from a very large data cohort of over 16 million interventional X-ray frames using self-supervision for image sequence data. Our approach is based on a masked image modeling technique that leverages frame interpolation based reconstruction to learn fine inter-frame temporal correspondences. The features encoded in the resulting model are fine-tuned downstream. Our approach achieves state-of-the-art performance and in particular robustness compared to ultra optimized reference solutions (that use multi-stage feature fusion, multi-task and flow regularization). The experiments show that our method achieves 66.31% reduction in maximum tracking error against reference solutions (23.20% when flow regularization is used); achieving a success score of 97.95% at a 3x faster inference speed of 42 frames-per-second (on GPU). The results encourage the use of our approach in various other tasks within interventional image analytics that require effective understanding of spatio-temporal semantics.

This paper investigates the effectiveness of self-supervised pre-trained transformers compared to supervised pre-trained transformers and conventional neural networks (ConvNets) for detecting various types of deepfakes. We focus on their potential for improved generalization, particularly when training data is limited. Despite the notable success of large vision-language models utilizing transformer architectures in various tasks, including zero-shot and few-shot learning, the deepfake detection community has still shown some reluctance to adopt pre-trained vision transformers (ViTs), especially large ones, as feature extractors. One concern is their perceived excessive capacity, which often demands extensive data, and the resulting suboptimal generalization when training or fine-tuning data is small or less diverse. This contrasts poorly with ConvNets, which have already established themselves as robust feature extractors. Additionally, training and optimizing transformers from scratch requires significant computational resources, making this accessible primarily to large companies and hindering broader investigation within the academic community. Recent advancements in using self-supervised learning (SSL) in transformers, such as DINO and its derivatives, have showcased significant adaptability across diverse vision tasks and possess explicit semantic segmentation capabilities. By leveraging DINO for deepfake detection with modest training data and implementing partial fine-tuning, we observe comparable adaptability to the task and the natural explainability of the detection result via the attention mechanism. Moreover, partial fine-tuning of transformers for deepfake detection offers a more resource-efficient alternative, requiring significantly fewer computational resources.

While diffusion models have achieved great success in generating continuous signals such as images and audio, it remains elusive for diffusion models in learning discrete sequence data like natural languages. Although recent advances circumvent this challenge of discreteness by embedding discrete tokens as continuous surrogates, they still fall short of satisfactory generation quality. To understand this, we first dive deep into the denoised training protocol of diffusion-based sequence generative models and determine their three severe problems, i.e., 1) failing to learn, 2) lack of scalability, and 3) neglecting source conditions. We argue that these problems can be boiled down to the pitfall of the not completely eliminated discreteness in the embedding space, and the scale of noises is decisive herein. In this paper, we introduce DINOISER to facilitate diffusion models for sequence generation by manipulating noises. We propose to adaptively determine the range of sampled noise scales for counter-discreteness training; and encourage the proposed diffused sequence learner to leverage source conditions with amplified noise scales during inference. Experiments show that DINOISER enables consistent improvement over the baselines of previous diffusion-based sequence generative models on several conditional sequence modeling benchmarks thanks to both effective training and inference strategies. Analyses further verify that DINOISER can make better use of source conditions to govern its generative process.

Large language models (LLMs) have significantly advanced audio processing through audio codecs that convert audio into discrete tokens, enabling the application of language modelling techniques to audio data. However, traditional codecs often operate at high bitrates or within narrow domains such as speech and lack the semantic clues required for efficient language modelling. Addressing these challenges, we introduce SemantiCodec, a novel codec designed to compress audio into fewer than a hundred tokens per second across diverse audio types, including speech, general audio, and music, without compromising quality. SemantiCodec features a dual-encoder architecture: a semantic encoder using a self-supervised AudioMAE, discretized using k-means clustering on extensive audio data, and an acoustic encoder to capture the remaining details. The semantic and acoustic encoder outputs are used to reconstruct audio via a diffusion-model-based decoder. SemantiCodec is presented in three variants with token rates of 25, 50, and 100 per second, supporting a range of ultra-low bit rates between 0.31 kbps and 1.43 kbps. Experimental results demonstrate that SemantiCodec significantly outperforms the state-of-the-art Descript codec on reconstruction quality. Our results also suggest that SemantiCodec contains significantly richer semantic information than all evaluated audio codecs, even at significantly lower bitrates. Our code and demos are available at //haoheliu.github.io/SemantiCodec/.

Task-oriented semantic communications (TSC) enhance radio resource efficiency by transmitting task-relevant semantic information. However, current research often overlooks the inherent semantic distinctions among encoded features. Due to unavoidable channel variations from time and frequency-selective fading, semantically sensitive feature units could be more susceptible to erroneous inference if corrupted by dynamic channels. Therefore, this letter introduces a unified channel-resilient TSC framework via information bottleneck. This framework complements existing TSC approaches by controlling information flow to capture fine-grained feature-level semantic robustness. Experiments on a case study for real-time subchannel allocation validate the framework's effectiveness.

北京阿比特科技有限公司