The Tactician's Web is a platform offering a large web of strongly interconnected, machine-checked, formal mathematical knowledge conveniently packaged for machine learning, analytics, and proof engineering. Built on top of the Coq proof assistant, the platform exports a dataset containing a wide variety of formal theories, presented as a web of definitions, theorems, proof terms, tactics, and proof states. Theories are encoded both as a semantic graph (rendered below) and as human-readable text, each with a unique set of advantages and disadvantages. Proving agents may interact with Coq through the same rich data representation and can be automatically benchmarked on a set of theorems. Tight integration with Coq provides the unique possibility to make agents available to proof engineers as practical tools.
Large Language Models (LLMs) have demonstrated remarkable problem-solving and basic mathematics abilities. However, their efficacy is highly contingent on the formulation of the prompt. This study endeavors to quantify the influence of incorporating "positive thinking" into the system message of the prompt, then compare that to systematic prompt optimization. We assess the performance of 60 combinations of system message snippets, tested with and without Chain of Thought prompting, across three models with parameters ranging from 7 to 70 billion on the GSM8K dataset. Our findings reveal that results do not universally generalize across models. In most instances, the inclusion of "positive thinking" prompts positively affected model performance. Notably, however, Llama2-70B exhibited an exception when not utilizing Chain of Thought, as the optimal system message was found to be none at all. Given the combinatorial complexity, and thus computation time, of experimenting with hand-tuning prompts for large black-box models, we then compared the performance of the best "positive thinking" prompt against the output of systematic prompt optimization. We show that employing an automated prompt optimizer emerges as the most effective method for enhancing performance, even when working with smaller open-source models. Additionally, our findings reveal that the highest-scoring, automatically-optimized prompt exhibits a degree of peculiarity far beyond expectations.
Instructing the model to generate a sequence of intermediate steps, a.k.a., a chain of thought (CoT), is a highly effective method to improve the accuracy of large language models (LLMs) on arithmetics and symbolic reasoning tasks. However, the mechanism behind CoT remains unclear. This work provides a theoretical understanding of the power of CoT for decoder-only transformers through the lens of expressiveness. Conceptually, CoT empowers the model with the ability to perform inherently serial computation, which is otherwise lacking in transformers, especially when depth is low. Given input length $n$, previous works have shown that constant-depth transformers with finite precision $\mathsf{poly}(n)$ embedding size can only solve problems in $\mathsf{TC}^0$ without CoT. We first show an even tighter expressiveness upper bound for constant-depth transformers with constant-bit precision, which can only solve problems in $\mathsf{AC}^0$, a proper subset of $ \mathsf{TC}^0$. However, with $T$ steps of CoT, constant-depth transformers using constant-bit precision and $O(\log n)$ embedding size can solve any problem solvable by boolean circuits of size $T$. Empirically, enabling CoT dramatically improves the accuracy for tasks that are hard for parallel computation, including the composition of permutation groups, iterated squaring, and circuit value problems, especially for low-depth transformers.
As Large Language Models (LLMs) are integrated into critical real-world applications, their strategic and logical reasoning abilities are increasingly crucial. This paper evaluates LLMs' reasoning abilities in competitive environments through game-theoretic tasks, e.g., board and card games that require pure logic and strategic reasoning to compete with opponents. We first propose GTBench, a language-driven environment composing 10 widely-recognized tasks, across a comprehensive game taxonomy: complete versus incomplete information, dynamic versus static, and probabilistic versus deterministic scenarios. Then, we investigate two key problems: (1) Characterizing game-theoretic reasoning of LLMs; (2) LLM-vs-LLM competitions as reasoning evaluation. We observe that (1) LLMs have distinct behaviors regarding various gaming scenarios; for example, LLMs fail in complete and deterministic games yet they are competitive in probabilistic gaming scenarios; (2) Open-source LLMs, e.g., CodeLlama-34b-Instruct, are less competitive than commercial LLMs, e.g., GPT-4, in complex games. In addition, code-pretraining greatly benefits strategic reasoning, while advanced reasoning methods such as Chain-of-Thought (CoT) and Tree-of-Thought (ToT) do not always help. Detailed error profiles are also provided for a better understanding of LLMs' behavior.
Compared with static knowledge graphs, temporal knowledge graphs (tKG), which can capture the evolution and change of information over time, are more realistic and general. However, due to the complexity that the notion of time introduces to the learning of the rules, an accurate graph reasoning, e.g., predicting new links between entities, is still a difficult problem. In this paper, we propose TILP, a differentiable framework for temporal logical rules learning. By designing a constrained random walk mechanism and the introduction of temporal operators, we ensure the efficiency of our model. We present temporal features modeling in tKG, e.g., recurrence, temporal order, interval between pair of relations, and duration, and incorporate it into our learning process. We compare TILP with state-of-the-art methods on two benchmark datasets. We show that our proposed framework can improve upon the performance of baseline methods while providing interpretable results. In particular, we consider various scenarios in which training samples are limited, data is biased, and the time range between training and inference are different. In all these cases, TILP works much better than the state-of-the-art methods.
Proximal Policy Optimization algorithm employing a clipped surrogate objective (PPO-Clip) is a prominent exemplar of the policy optimization methods. However, despite its remarkable empirical success, PPO-Clip lacks theoretical substantiation to date. In this paper, we contribute to the field by establishing the first global convergence results of a PPO-Clip variant in both tabular and neural function approximation settings. Our findings highlight the $O(1/\sqrt{T})$ min-iterate convergence rate specifically in the context of neural function approximation. We tackle the inherent challenges in analyzing PPO-Clip through three central concepts: (i) We introduce a generalized version of the PPO-Clip objective, illuminated by its connection with the hinge loss. (ii) Employing entropic mirror descent, we establish asymptotic convergence for tabular PPO-Clip with direct policy parameterization. (iii) Inspired by the tabular analysis, we streamline convergence analysis by introducing a two-step policy improvement approach. This decouples policy search from complex neural policy parameterization using a regression-based update scheme. Furthermore, we gain deeper insights into the efficacy of PPO-Clip by interpreting these generalized objectives. Our theoretical findings also mark the first characterization of the influence of the clipping mechanism on PPO-Clip convergence. Importantly, the clipping range affects only the pre-constant of the convergence rate.
Demonstration ordering, which is an important strategy for in-context learning (ICL), can significantly affects the performance of large language models (LLMs). However, most of the current approaches of ordering require additional knowledge and similarity calculation. We advocate the few-shot in-context curriculum learning (ICCL), a simple but effective demonstration ordering method for ICL, which implies gradually increasing the complexity of prompt demonstrations during the inference process. Then we design three experiments to discuss the effectiveness of ICCL, the formation mechanism of LLM's ICCL capability, and the impact of ordering subjects. Experimental results demonstrate that ICCL, developed during the instruction-tuning stage, is effective for open-source LLMs. Moreover, LLMs exhibit a weaker capacity compared to humans in discerning the difficulty levels of demonstrations. We release our code at //github.com/61peng/curri_learning.
Knowledge graph embedding (KGE) is a increasingly popular technique that aims to represent entities and relations of knowledge graphs into low-dimensional semantic spaces for a wide spectrum of applications such as link prediction, knowledge reasoning and knowledge completion. In this paper, we provide a systematic review of existing KGE techniques based on representation spaces. Particularly, we build a fine-grained classification to categorise the models based on three mathematical perspectives of the representation spaces: (1) Algebraic perspective, (2) Geometric perspective, and (3) Analytical perspective. We introduce the rigorous definitions of fundamental mathematical spaces before diving into KGE models and their mathematical properties. We further discuss different KGE methods over the three categories, as well as summarise how spatial advantages work over different embedding needs. By collating the experimental results from downstream tasks, we also explore the advantages of mathematical space in different scenarios and the reasons behind them. We further state some promising research directions from a representation space perspective, with which we hope to inspire researchers to design their KGE models as well as their related applications with more consideration of their mathematical space properties.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
We study the problem of incorporating prior knowledge into a deep Transformer-based model,i.e.,Bidirectional Encoder Representations from Transformers (BERT), to enhance its performance on semantic textual matching tasks. By probing and analyzing what BERT has already known when solving this task, we obtain better understanding of what task-specific knowledge BERT needs the most and where it is most needed. The analysis further motivates us to take a different approach than most existing works. Instead of using prior knowledge to create a new training task for fine-tuning BERT, we directly inject knowledge into BERT's multi-head attention mechanism. This leads us to a simple yet effective approach that enjoys fast training stage as it saves the model from training on additional data or tasks other than the main task. Extensive experiments demonstrate that the proposed knowledge-enhanced BERT is able to consistently improve semantic textual matching performance over the original BERT model, and the performance benefit is most salient when training data is scarce.
We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.