亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work, we report the results of applying deep learning based on hybrid convolutional-recurrent and purely recurrent neural network architectures to the dataset of almost one million complete intersection Calabi-Yau four-folds (CICY4) to machine-learn their four Hodge numbers $h^{1,1}, h^{2,1}, h^{3,1}, h^{2,2}$. In particular, we explored and experimented with twelve different neural network models, nine of which are convolutional-recurrent (CNN-RNN) hybrids with the RNN unit being either GRU (Gated Recurrent Unit) or Long Short Term Memory (LSTM). The remaining four models are purely recurrent neural networks based on LSTM. In terms of the $h^{1,1}, h^{2,1}, h^{3,1}, h^{2,2}$ prediction accuracies, at 72% training ratio, our best performing individual model is CNN-LSTM-400, a hybrid CNN-LSTM with the LSTM hidden size of 400, which obtained 99.74%, 98.07%, 95.19%, 81.01%, our second best performing individual model is LSTM-448, an LSTM-based model with the hidden size of 448, which obtained 99.74%, 97.51%, 94.24%, and 78.63%. These results were improved by forming ensembles of the top two, three or even four models. Our best ensemble, consisting of the top four models, achieved the accuracies of 99.84%, 98.71%, 96.26%, 85.03%. At 80% training ratio, the top two performing models LSTM-448 and LSTM-424 are both LSTM-based with the hidden sizes of 448 and 424. Compared with the 72% training ratio, there is a significant improvement of accuracies, which reached 99.85%, 98.66%, 96.26%, 84.77% for the best individual model and 99.90%, 99.03%, 97.97%, 87.34% for the best ensemble.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 連結 · BASIC · 無監督 · Neural Networks ·
2024 年 7 月 12 日

Computational models of syntax are predominantly text-based. Here we propose that the most basic syntactic operations can be modeled directly from raw speech in a fully unsupervised way. We focus on one of the most ubiquitous and elementary properties of syntax -- concatenation. We introduce spontaneous concatenation: a phenomenon where convolutional neural networks (CNNs) trained on acoustic recordings of individual words start generating outputs with two or even three words concatenated without ever accessing data with multiple words in the input. We replicate this finding in several independently trained models with different hyperparameters and training data. Additionally, networks trained on two words learn to embed words into novel unobserved word combinations. To our knowledge, this is a previously unreported property of CNNs trained in the ciwGAN/fiwGAN setting on raw speech and has implications both for our understanding of how these architectures learn as well as for modeling syntax and its evolution from raw acoustic inputs.

Motivated by the application of saddlepoint approximations to resampling-based statistical tests, we prove that a Lugananni-Rice style approximation for conditional tail probabilities of averages of conditionally independent random variables has vanishing relative error. We also provide a general condition on the existence and uniqueness of the solution to the corresponding saddlepoint equation. The results are valid under a broad class of distributions involving no restrictions on the smoothness of the distribution function. The derived saddlepoint approximation formula can be directly applied to resampling-based hypothesis tests, including bootstrap, sign-flipping and conditional randomization tests. Our results extend and connect several classical saddlepoint approximation results. On the way to proving our main results, we prove a new conditional Berry-Esseen inequality for the sum of conditionally independent random variables, which may be of independent interest.

Recent methods in modeling spatial extreme events have focused on utilizing parametric max-stable processes and their underlying dependence structure. In this work, we provide a unified approach for analyzing spatial extremes with little available data by estimating the distribution of model parameters or the spatial dependence directly. By employing recent developments in generative neural networks we predict a full sample-based distribution, allowing for direct assessment of uncertainty regarding model parameters or other parameter dependent functionals. We validate our method by fitting several simulated max-stable processes, showing a high accuracy of the approach, regarding parameter estimation, as well as uncertainty quantification. Additional robustness checks highlight the generalization and extrapolation capabilities of the model, while an application to precipitation extremes across Western Germany demonstrates the usability of our approach in real-world scenarios.

Deep neural networks (DNNs) have demonstrated remarkable empirical performance in large-scale supervised learning problems, particularly in scenarios where both the sample size $n$ and the dimension of covariates $p$ are large. This study delves into the application of DNNs across a wide spectrum of intricate causal inference tasks, where direct estimation falls short and necessitates multi-stage learning. Examples include estimating the conditional average treatment effect and dynamic treatment effect. In this framework, DNNs are constructed sequentially, with subsequent stages building upon preceding ones. To mitigate the impact of estimation errors from early stages on subsequent ones, we integrate DNNs in a doubly robust manner. In contrast to previous research, our study offers theoretical assurances regarding the effectiveness of DNNs in settings where the dimensionality $p$ expands with the sample size. These findings are significant independently and extend to degenerate single-stage learning problems.

In the literature on spatial point processes, there is an emerging challenge in studying marked point processes with points being labelled by functions. In this paper, we focus on point processes living on linear networks and, from distinct points of view, propose several marked summary characteristics that are of great use in studying the average association and dispersion of the function-valued marks. Through a simulation study, we evaluate the performance of our proposed marked summary characteristics, both when marks are independent and when some sort of spatial dependence is evident among them. Finally, we employ our proposed mark summary characteristics to study the spatial structure of urban cycling profiles in Vancouver, Canada.

In this paper, we study an optimal control problem for a coupled non-linear system of reaction-diffusion equations with degenerate diffusion, consisting of two partial differential equations representing the density of cells and the concentration of the chemotactic agent. By controlling the concentration of the chemical substrates, this study can guide the optimal growth of cells. The novelty of this work lies on the direct and dual models that remain in a weak setting, which is uncommon in the recent literature for solving optimal control systems. Moreover, it is known that the adjoint problems offer a powerful approach to quantifying the uncertainty associated with model inputs. However, these systems typically lack closed-form solutions, making it challenging to obtain weak solutions. For that, the well-posedness of the direct problem is first well guaranteed. Then, the existence of an optimal control and the first-order optimality conditions are established. Finally, weak solutions for the adjoint system to the non-linear degenerate direct model, are introduced and investigated.

In this paper, we introduce the finite difference weighted essentially non-oscillatory (WENO) scheme based on the neural network for hyperbolic conservation laws. We employ the supervised learning and design two loss functions, one with the mean squared error and the other with the mean squared logarithmic error, where the WENO3-JS weights are computed as the labels. Each loss function consists of two components where the first component compares the difference between the weights from the neural network and WENO3-JS weights, while the second component matches the output weights of the neural network and the linear weights. The former of the loss function enforces the neural network to follow the WENO properties, implying that there is no need for the post-processing layer. Additionally the latter leads to better performance around discontinuities. As a neural network structure, we choose the shallow neural network (SNN) for computational efficiency with the Delta layer consisting of the normalized undivided differences. These constructed WENO3-SNN schemes show the outperformed results in one-dimensional examples and improved behavior in two-dimensional examples, compared with the simulations from WENO3-JS and WENO3-Z.

The paper concerns the extension of the Heritage Digital Twin Ontology introduced in previous work to describe the reactivity of digital twins used for cultural heritage documentation by including the semantic description of sensors and activators and all the process of interacting with the real world. After analysing previous work on the use of digital twins in cultural heritage, a summary description of the Heritage Digital Twin Ontology is provided, and the existing applications of digital twins to cultural heritage are overviewed, with references to reviews summarizing the large production of scientific contributions on the topic. Then a novel ontology, named Reactive Digital Twin Ontology is described, in which sensors, activators and the decision processes are also semantically described, turning the previous synchronic approach to cultural heritage documentation into a diachronic one. Some case studies exemplify this theory.

The growing energy and performance costs of deep learning have driven the community to reduce the size of neural networks by selectively pruning components. Similarly to their biological counterparts, sparse networks generalize just as well, if not better than, the original dense networks. Sparsity can reduce the memory footprint of regular networks to fit mobile devices, as well as shorten training time for ever growing networks. In this paper, we survey prior work on sparsity in deep learning and provide an extensive tutorial of sparsification for both inference and training. We describe approaches to remove and add elements of neural networks, different training strategies to achieve model sparsity, and mechanisms to exploit sparsity in practice. Our work distills ideas from more than 300 research papers and provides guidance to practitioners who wish to utilize sparsity today, as well as to researchers whose goal is to push the frontier forward. We include the necessary background on mathematical methods in sparsification, describe phenomena such as early structure adaptation, the intricate relations between sparsity and the training process, and show techniques for achieving acceleration on real hardware. We also define a metric of pruned parameter efficiency that could serve as a baseline for comparison of different sparse networks. We close by speculating on how sparsity can improve future workloads and outline major open problems in the field.

Nowadays, the Convolutional Neural Networks (CNNs) have achieved impressive performance on many computer vision related tasks, such as object detection, image recognition, image retrieval, etc. These achievements benefit from the CNNs outstanding capability to learn the input features with deep layers of neuron structures and iterative training process. However, these learned features are hard to identify and interpret from a human vision perspective, causing a lack of understanding of the CNNs internal working mechanism. To improve the CNN interpretability, the CNN visualization is well utilized as a qualitative analysis method, which translates the internal features into visually perceptible patterns. And many CNN visualization works have been proposed in the literature to interpret the CNN in perspectives of network structure, operation, and semantic concept. In this paper, we expect to provide a comprehensive survey of several representative CNN visualization methods, including Activation Maximization, Network Inversion, Deconvolutional Neural Networks (DeconvNet), and Network Dissection based visualization. These methods are presented in terms of motivations, algorithms, and experiment results. Based on these visualization methods, we also discuss their practical applications to demonstrate the significance of the CNN interpretability in areas of network design, optimization, security enhancement, etc.

北京阿比特科技有限公司